# Small systems at RHIC: a brief overview

Ron Belmont University of North Carolina at Greensboro

> GHP 2021 The Internet 13 April 2021



- Identified particles
- Thermal photons
- Flow correlations
  - -Small systems beam energy scan
  - —Small systems geometry scan

Identified particles

#### Reminder: the nuclear modification factor is

 $R_{AB} = \frac{\text{Yield in AB collisions}}{\text{Yield in pp collisions} \cdot \text{Number of binary collisions}}$ 

### Identified hadron nuclear modification factors in p+Au



#### $\phi$ meson in $p{+}{\rm Au}$

### Identified hadron nuclear modification factors in p+Au



 $\phi$  meson in  $p{+}{\rm Au}$ 

 $\phi$  shows similar modification to  $\pi^0$  in *p*+Au despite different mass and strangeness content

# Identified hadron nuclear modification factors in <sup>3</sup>He+Au



R. Belmont, UNCG

GHP 2021, 13 April 2021 - Slide 5

### Identified hadron nuclear modification factors in <sup>3</sup>He+Au



# Particle species dependence of "Cronin enhancement"

PHENIX, Phys. Rev. C 88, 024906 (2013)



R. Belmont, UNCG GHP 2021, 13 April 2021 - Slide 6

# Particle species dependence of "Cronin enhancement"

PHENIX, Phys. Rev. C 88, 024906 (2013)



$$\pi^+, \pi^-, \pi^0, K^+, K^-, \mu, \bar{\rho}, \bar{\rho}, \phi$$

Baryons strongly different from mesons, as found in large systems

Thermal photons

### Nuclear modification of photons



# Nuclear modification of photons



• Thermal photons in p+Au?

### Nuclear modification of photons



• Thermal photons in p+Au? Theory from C. Shen et al, Phys. Rev. C 95, 014906 (2017)

# Photon yields



#### PHENIX, Phys. Rev. Lett. 123, 022301 (2019)

Common scaling for Au+Au and Pb+Pb at different energies; very different from  $N_{coll}$ -scaled p+p

# Photon yields



Common scaling for Au+Au and Pb+Pb at different energies; very different from  $N_{coll}$ -scaled p+p

p+Au and d+Au in between, indicating a possible turn-on of thermal photons Flow correlations

Reminder: we study flow via Fourier decomposition of the angular distribution of particles in the transverse plane

$$rac{dN}{darphi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos narphi \qquad v_n = \langle \cos narphi 
angle$$

PHENIX, Phys. Rev. Lett. 120, 062302 (2018)



PHENIX, Phys. Rev. Lett. 120, 062302 (2018)



PHENIX, Phys. Rev. Lett. 120, 062302 (2018)



• Measurement of  $v_2{6}$  in d+Au at 200 GeV and  $v_2{4}$  in d+Au at all energies

• Multiparticle correlations can be a good indicator of collectivity

STAR, Initial Stages 2019



- STAR sees negative  $c_2$ {4} in d+Au, qualitatively consistent with PHENIX
- The differences in kinematics between the two experiments are important





- STAR  $v_2$ {2} qualitatively like PHENIX (important: different kinematics)
- High multiplicity dominated by collective flow



- STAR  $v_2$ {2} qualitatively like PHENIX (important: different kinematics)
- High multiplicity dominated by collective flow
- One needs to be careful about assumptions in nonflow subtraction methods —See S. Lim et al, Phys. Rev. C 100, 024908 (2019)



R. Belmont, UNCG GHP 2021, 13 April 2021 - Slide 14



v<sub>2</sub> and v<sub>3</sub> vs p<sub>T</sub> predicted or described very well by hydrodynamics in all three systems
 —All predicted (except v<sub>2</sub> in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
 —v<sub>3</sub> in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)



 Initial state effects alone do not describe the data —Phys. Rev. Lett. 123, 039901 (Erratum) (2019)

#### PHENIX, Nat. Phys. 15, 214-220 (2019)



Important to include initial state effects
 B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

# Comparisons with STAR

#### STAR, Quark Matter 2019



# Good agreement between STAR and PHENIX for $\ensuremath{\textit{v}}_2$

# Comparisons with STAR

#### STAR, Quark Matter 2019



Good agreement between STAR and PHENIX for  $v_2$ 

Large discrepancy between STAR and PHENIX for  $v_3$ 

# PHENIX data update



- PHENIX has completed a new analysis confirming the results published in Nature Physics
- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
  - -Very different sensitivity to key experimental effects (beam position, detector alignment)

# PHENIX data update



- PHENIX has completed a new analysis confirming the results published in Nature Physics
- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
  - -Very different sensitivity to key experimental effects (beam position, detector alignment)

# PHENIX data update



- PHENIX has completed a new analysis confirming the results published in Nature Physics
- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
  - -Very different sensitivity to key experimental effects (beam position, detector alignment)
- It's essential to understand the two experiments have very different detector acceptances —STAR-PHENIX discrepancy may actually reveal interesting physics!

# Summary

- Identified particles in small systems
  - -Minimal sensitivity to mass and strangeness
  - -Strong sensitivity to baryon vs meson
  - -Hadronization (likely via parton coalescence) plays a key role in system dynamics and observables
- Photons in small systems
  - —Excess in photon  $R_{pA}$  at low  $p_T$  may indicate presence of thermal photons
  - —Scaled photon yields may show turn-on of thermal photons from p+p to small systems to large systems
- Flow correlations in small systems
  - -Long term understanding of collective and hydrodynamical behavior of heavy ion data
  - -Geometry and fluctuations play essential roles in observables
  - -Collective behavior seen in small systems, predicted and described by hydro

Extra material

# STAR and PHENIX detector comparison



- The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination —This is very different from the STAR analysis
- We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR —Closer, and "balanced" between forward and backward, *but still different*



 STAR not showing new results in public, but has verified their QM19 results —Both experiments' results confirmed, so differences need to be understood in terms of physics



- STAR not showing new results in public, but has verified their QM19 results —Both experiments' results confirmed, so differences need to be understood in terms of physics
- Good agreement with STAR for  $v_2$ 
  - -Similar physics for the two different pseudorapidity acceptances



- STAR not showing new results in public, but has verified their QM19 results —Both experiments' results confirmed, so differences need to be understood in terms of physics
- Good agreement with STAR for  $v_2$ 
  - -Similar physics for the two different pseudorapidity acceptances
- Strikingly different results for  $v_3$ 
  - -Rather different physics for the two different pseudorapidity acceptances
  - —Decorrelation effects much stronger for  $v_3$  than  $v_2$



- STAR not showing new results in public, but has verified their QM19 results —Both experiments' results confirmed, so differences need to be understood in terms of physics
- Good agreement with STAR for  $v_2$ 
  - -Similar physics for the two different pseudorapidity acceptances
- Strikingly different results for  $v_3$ 
  - -Rather different physics for the two different pseudorapidity acceptances
  - —Decorrelation effects much stronger for  $v_3$  than  $v_2$

### Initial eccentricities

#### Table compiled by J.L. Nagle

| System                          | Nagle<br>Nucleons w/o<br>NBD<br>fluctuations | Welsh<br>Nucleons w/<br>NBD<br>fluctuations | Welsh Quarks<br>w/ NBD and<br>Gluon<br>fluctuations | IPGlasma<br>w/ Nucleons<br>t=0 | IP-Glasma<br>w/ 3 Quarks<br>t=0 |
|---------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------|---------------------------------|
| $\epsilon_2 p+Au$               | 0.23                                         | 0.32                                        | 0.38                                                | 0.10                           | 0.50                            |
| $\epsilon_2 d+Au$               | 0.54                                         | 0.48                                        | 0.51                                                | 0.58                           | 0.73                            |
| $\epsilon_2^{3}$ He+Au          | 0.50                                         | 0.50                                        | 0.52                                                | 0.55                           | 0.64                            |
|                                 |                                              |                                             |                                                     |                                |                                 |
| $\epsilon_3 p$ +Au              | 0.16                                         | 0.24                                        | 0.30                                                | 0.09                           | 0.32                            |
| $\epsilon_3 d$ +Au              | 0.18                                         | 0.28                                        | 0.31                                                | 0.28                           | 0.40                            |
| $\epsilon_3$ <sup>3</sup> He+Au | 0.28                                         | 0.32                                        | 0.35                                                | 0.34                           | 0.46                            |

• Nagle et al: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.112301

- Welsh et al: https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.024919
- IP-Glasma run by S. Lim using publicly available code (thanks to B. Schenke)

#### PHENIX, Nat. Phys. 15, 214-220 (2019)



-Collective motion of system translates the initial geometry into the final state

R. Belmont, UNCG GHP 2021, 13 April 2021 - Slide 23

Phys. Rev. Lett. 121, 222301 (2018)



p+Al, p+Au, d+Au, <sup>3</sup>He+Au

Good agreement with wounded quark model (M. Barej et al, Phys. Rev. C 97, 034901 (2018))

Good agreement with 3D hydro (P. Bozek et al, Phys. Lett. B 739, 308 (2014))

### Longitudinal dynamics in small systems

#### Phys. Rev. Lett. 121, 222301 (2018)



•  $v_2$  vs  $\eta$  in p+Al, p+Au, d+Au, and <sup>3</sup>He+Au

• Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

# Longitudinal dynamics in small systems

#### Phys. Rev. Lett. 121, 222301 (2018)



•  $v_2$  vs  $\eta$  in p+Al, p+Au, d+Au, and <sup>3</sup>He+Au

- Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
- Prevalence of nonflow near the EP detector ( $-3.9 < \eta < -3.1$ )

# Longitudinal dynamics in small systems

#### Phys. Rev. Lett. 121, 222301 (2018)



•  $v_2$  vs  $\eta$  in p+Al, p+Au, d+Au, and <sup>3</sup>He+Au

- Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
- Prevalence of nonflow near the EP detector ( $-3.9 < \eta < -3.1$ )