Data-driven quark and gluon jet modification in heavy-ion collisions

Jasmine Brewer

In collaboration with Jesse Thaler and Andrew Patrick Turner

Based on arXiv:2008.08596
Modification of jets a probe of quark-gluon plasma

proton–proton

heavy-ion

“baseline” jet properties
At leading order, jets are initiated by a quark or gluon from the hard process

\(q, g\)

\(C_q = 4/3\)

\(C_g = 3\)
Differences in quark and gluon jet energy loss in quark-gluon plasma

Quarks and gluons interact with the plasma proportional to their color factor

\[\frac{dE}{dx}(q) = \frac{C_q}{C_g} \frac{dE}{dx}(g) \]

Quark and gluon jets are extended objects whose energy loss may depend on their structure

\[\frac{dE}{dx}(q) = \text{???} \frac{dE}{dx}(g) \]
Separating quark and gluon jets is challenging because jet measurements are mixture of contributions from both
Separating quark and gluon jets is challenging because jet measurements are mixture of contributions from both

Outline

• A data-driven method for q/g separation (in cartoons)

• Monte Carlo studies in pp and AA
Disentangling mixture distributions into “quark” and “gluon”

\[p_1 = f_1 b_1 + (1 - f_1) b_2 \]

\[p_2 = (1 - f_2) b_1 + f_2 b_2 \]

Disentangling mixture distributions into “quark” and “gluon”

\[p_1 = f_1 b_1 + (1 - f_1) b_2 \]

\[p_2 = (1 - f_2) b_1 + f_2 b_2 \]

Disentangling mixture distributions into “quark” and “gluon”

\[p_1 = f_1 b_1 + (1 - f_1) b_2 \]

\[p_2 = (1 - f_2) b_1 + f_2 b_2 \]

Solve for base distributions \(b_1, b_2 \) in terms of mixture distributions and fractions

Disentangling mixture distributions into “quark” and “gluon”

Requires…

Sample independence:

example

dijets

Jet Observable

\(b_1 \)

\(b_2 \)

\(\gamma + \text{jet} \)

Jet Observable

\(b_1 \)

\(b_2 \)
Disentangling mixture distributions into “quark” and “gluon”

Requires…

Sample independence:

Mutual Irreducibility: samples are pure quark and pure gluon in some limits

Above: base distributions are completely separated at \(\pm \infty \)

Quantified by

\[
\lim_{\mathcal{O} \to \infty} \frac{b_1(\mathcal{O})}{b_2(\mathcal{O})} = 0 \quad \lim_{\mathcal{O} \to -\infty} \frac{b_2(\mathcal{O})}{b_1(\mathcal{O})} = 0
\]
Mutual irreducibility of counting observables

Poisson distributions are mutually irreducible for large $\Delta \lambda$

\[
\lim_{\mathcal{O} \to \infty} \frac{b_1(\mathcal{O})}{b_2(\mathcal{O})} = 0
\]

\[
\lim_{\mathcal{O} \to 0} \frac{b_2(\mathcal{O})}{b_1(\mathcal{O})} = \exp(\lambda_1 - \lambda_2)
\]

Quark and gluon constituent multiplicity distributions are mutually irreducible in the high-energy limit

Frye et al [1704.06266]
How are quark- and gluon-initiated jets modified by the quark–gluon plasma?

proton–proton

Proton-Proton (PYTHIA 6.4.25)
$p_T \in [100, 120] \text{ GeV}, |\eta| < 1$

heavy-ion

Heavy-Ion (JEWEL 2.1.0)
$p_T \in [100, 120] \text{ GeV}, |\eta| < 1$
Fractions are sensitive to tails of the distribution where statistics are low.

proton–proton

\[\frac{1 - f_1}{1 - f_2} \]

\[\frac{f_2}{f_1} \]
Fractions are sensitive to tails of the distribution where statistics are low

proton–proton

\[
\frac{1 - f_1}{1 - f_2} \quad \frac{f_2}{f_1}
\]

heavy-ion

\[
\frac{1 - f_1}{1 - f_2} \quad \frac{f_2}{f_1}
\]
Fractions are sensitive to tails of the distribution where statistics are low.

How to robustly extract fractions with statistical uncertainties?

proton–proton

\[\frac{1 - f_1}{1 - f_2} \]

heavy-ion

\[\frac{1 - f_1}{1 - f_2} \]
A solution: use fitting to constrain the tails using the interior of the distribution

proton–proton

heavy-ion

Each distribution is a distinct sum of 4 skew-normal distributions (18 fit parameters)

Fit using MCMC with Poisson likelihood function
A solution: use fitting to constrain the tails using the interior of the distribution

proton–proton

\[
\frac{1 - f_1}{1 - f_2}
\]

heavy-ion

\[
\frac{1 - f_1}{1 - f_2}
\]
Extracting quark/gluon contributions to constituent multiplicity

proton–proton

Proton–Proton (PYTHIA 6.4.25) $p_T \in [100, 120]$ GeV, $|\eta| < 1$

Constituent Multiplicity

Probability

Proton–Proton (PYTHIA 6.4.25) $p_T \in [100, 120]$ GeV, $|\eta| < 1$

Constituent Multiplicity

Gluon-like Fraction

Proton–Proton (PYTHIA 6.4.25)
Extracting quark/gluon contributions to constituent multiplicity

Jasmine Brewer (CERN)
Data-driven quark and gluon jet modification from dijet and γ+jet

proton–proton

Proton–Proton (Pythia 6.4.25)
$p_T \in [100, 120]$ GeV, $|y| < 1$

- "q" Topic
- "g" Topic
- γ+q
- γ+g

heavy-ion

Heavy-Ion (Jewel 2.1.0)
$p_T \in [100, 120]$ GeV, $|y| < 1$

- "q" Topic
- "g" Topic
- γ+q
- γ+g
Data-driven quark and gluon jet modification from dijet and γ+jet

proton–proton

heavy-ion

![Proton–Proton (PYTHIA 6.4.25) $p_T \in [100, 120]$ GeV, $|\eta| < 1$](image)

![Heavy-Ion (JEWEL 2.1.0) $p_T \in [100, 120]$ GeV, $|\eta| < 1$](image)

![Proton–Proton (PYTHIA 6.4.25) $p_T \in [100, 120]$ GeV, $|\eta| < 1$](image)

![Heavy-Ion (JEWEL 2.1.0) $p_T \in [100, 120]$ GeV, $|\eta| < 1$](image)
Outlook

Toward measuring quark- and gluon-like jet modification and energy loss

• This type of method has been used in p—p by ATLAS [1906.09254]

• Method of posterior estimation substantially improves robustness of the method to statistical uncertainties

 How to deal with systematic uncertainties?

• What observables are robust to background subtraction?
 charged particle multiplicity? constituent multiplicity of soft-dropped jets?

 Work in progress with Kylie Ying, Yi Chen, Yen-Jie Lee (MIT)

Applications to other category problems in heavy-ions?
What do differences between topic and MC fractions mean?
What do differences between topic and MC fractions mean?

- Limited statistics effects on topic fractions
What do differences between topic and MC fractions mean?

- Limited statistics effects on topic fractions

Insignificant change in fractions due to factor 2.8 increase in statistics
What do differences between topic and MC fractions mean?

- Limited statistics effects on topic fractions
 Insignificant change in fractions due to factor 2.8 increase in statistics
- Ambiguity in MC quark and gluon labelling
What do differences between topic and MC fractions mean?

- Limited statistics effects on topic fractions

 Insignificant change in fractions due to factor 2.8 increase in statistics

- Ambiguity in MC quark and gluon labelling

 Slight decrease in extracted gluon fraction for jets with an initiating parton within the jet radius
What do differences between topic and MC fractions mean?

• Limited statistics effects on topic fractions
 Insignificant change in fractions due to factor 2.8 increase in statistics

• Ambiguity in MC quark and gluon labelling
 Slight decrease in extracted gluon fraction for jets with an initiating parton within the jet radius

• Deviations from quark/ gluon mutual irreducibility in constituent multiplicity
What do differences between topic and MC fractions mean?

- Limited statistics effects on topic fractions

 Insignificant change in fractions due to factor 2.8 increase in statistics

- Ambiguity in MC quark and gluon labelling

 Slight decrease in extracted gluon fraction for jets with an initiating parton within the jet radius

- Deviations from quark/ gluon mutual irreducibility in constituent multiplicity

- “Quark-initiated” jets become more gluon-like