Production of muon-pairs from **yy** scattering in Non-UltraPeripheral Pb+Pb collisions

Soumya Mohapatra (Columbia University)

ATLAS-CONF-2019-051 arXiv:2011.12211 (Submitted to PRC) Phys. Rev. Lett. 121 (2018) 212301

Dilepton production in Ultra-Peripheral Collisions (UPC)²

Phys.Rev.C82:014904,2010

In Pb+Pb collisions, the electromagnetic fields of the charged nuclei are enhanced by factors of Z^2 .

Modelled as quasi-real photon fields, this provides an enhancement of Z^4 for the $\gamma \gamma \rightarrow \mu^+ \mu^-$ processes. For Pb ions $Z^4 \sim 5x10^7$

Max p_7 of photons in rest frame of nucleus: ~1/(2R) ~1/15fm ~ O(10 MeV)

in lab frame is ~2500*10MeV~25 GeV

Maximum p_{T} of incoming photons ~same as restframe $p_{\rm T} \sim O(10 \text{ MeV})$.

Outgoing muons will be nearly back-to back in ϕ and have nearly identical $p_{\rm T}$

- In Lab frame $|p_{z}|$ increased by boost: at LHC the $|p_{z}|$

Observables: Asymmetry (A), Acoplanarity (α), k_{\perp}

3

$$A \equiv (p_{T_1} - p_{T_2}) / (p_{T_1} + p_{T_2})$$

Mismatch in transverse momentum of the two muons

Observables: Asymmetry (A), Acoplanarity (α), k_{\perp}

$$A \equiv (p_{T_1} - p_{T_2}) / (p_{T_1} + p_{T_2})$$

Mismatch in transverse momentum of the two muons

$\alpha \equiv 1 - |\Delta \phi| / \pi$ Deviation from being perfectly back-to-back

Observables: Asymmetry (A), Acoplanarity (α), k_{\perp}

$$A \equiv (p_{T_1} - p_{T_2}) / (p_{T_1} + p_{T_2})$$

Mismatch in transverse momentum of the two muons

$$\alpha \equiv 1 - |\Delta \phi|/\pi$$
 Deviation from being perfectly back-to-back

$k_{\perp} \equiv (p_{\mathrm{T}_{1}} + p_{\mathrm{T}_{2}}) \left| (\pi - \Delta \phi) \right| / 2 = \pi \alpha \bar{p}_{\mathrm{T}_{1}}$

Momentum scale corresponding to the angular scale α

Acoplanarity distributions in UPC collisions

ATLAS measurements of Acoplanarity distribution of dimuons in UPC Pb+Pb collisions

Measurements well reproduced by STARLIGHT calculations

STARLIGHT uses the equivalent photon approximation + leading order QED crosssections

arXiv:2011.12211

$\gamma\gamma \rightarrow \mu\mu$ in non-UPC collisions : why study it?

- γγ→µµ process also present in inelastic heavy ion collisions
- Muons produced by photon scattering can in principle interact with the QGP produced in heavy-ion collisions.
- Can act as a EM probes of the QGP (Klien *et.al.* Phys. Rev. Lett. 122 (2019) 132301)
- Can also see effects of the magnetic fields of the colliding nuclei (Ye et. al. Phys. Rev. C99 (2019) 044901)
- Impact parameter dependence of EM Fields (W. Zha et.al. Phys. Lett. B 800 (2020) 135089)
- Measurement more complicated as there are other sources of muons : Heavy-Flavor decays.

Signal & background pairs

- Reduce the HF contribution by requiring muons to be closely matched in $p_{\rm T}$ and be nearly back to back in ϕ
 - Require Asymmetry < 0.06, i.e. the p_T of the two muons to be within 6% of the average p_T .
 - Require Acoplanarity<0.012
 - Reduces background by ~2 orders of magnitude in central collisions
- HF muons often arise from displaced secondary decay vertices
 - Use impact parameter w.r.t. collision vertex in the transverse (d_0) plane to remove residual background
 - "Pair impact parameter" defined as: $d_{0_{pair}} = \sqrt{d_{0_1}^2 + d_{0_2}^2}$

Estimating residual background contribution

$$d_{0_{pair}} = \sqrt{d}$$

- To estimate the residual background, fit the $d_{0\text{pair}}$ distribution in the data by linear sum of signal and background d_{0pair} -templates
 - $d_{0\text{pair}}$ template for signal obtained from MC (STARLIGHT)
 - $d_{0\text{pair}}$ template for background obtained from Data:
 - require Acoplanarity>0.015, Asymmetry>0.2

$d_{0_1}^2 + d_{0_2}^2$

Estimating residual background contribution

- To estimate the residual background, fit the $d_{0\text{pair}}$ distribution in the data by linear sum of signal and background d_{0pair} -templates
 - $d_{0\text{pair}}$ template for signal obtained from MC (STARLIGHT)
 - $d_{0\text{pair}}$ template for background obtained from Data:
 - require Acoplanarity>0.015, Asymmetry>0.2

10

Acoplanarity distributions

For UPC collisions the data matches STARLIGHT.

$\alpha \equiv 1 - |\Delta \phi| / \pi$ Data compared to STARLIGHT

Acoplanarity distributions

For UPC collisions the data matches STARLIGHT.

$\alpha \equiv 1 - |\Delta \phi| / \pi$ Data compared to STARLIGHT

See distinct change in shape of distribution from :

 $UPC \rightarrow mid-central \rightarrow central$

Acoplanarity distributions

$\alpha \equiv 1 - |\Delta \phi| / \pi$

Data compared to STARLIGHT

For UPC collisions the data matches STARLIGHT.

^α See distinct change in shape of
distribution :

UPC \rightarrow mid-central \rightarrow central collisions

In particular development of a "dip" at $\alpha=0$

Acoplanarity distributions : p_{T} Dependence

- Strong $p_{\rm T}$ dependence observed in the shape of the acoplanarity distribution
- Distribution becomes sharper and depletion becomes weaker at higher $p_{\rm T}$
- Are higher $p_{\rm T}$ particles affected less?

k_{\perp} distributions : p_{T} Dependence

- Much weaker p_T dependence observed for k_{\perp} distributions.
- Indicates similar momentum kick at different $p_{\rm T}$
 - Thus higher $p_{\rm T}$ particles deflected less.
- k_{\perp} is "better" observable for studying centrality dependence.

 p_{T2}

k_{\perp} distributions

- Can quantify change in shape with moments k_{\perp} distributions.
- Generally moments increase by 20-25 MeV from UPC to central collisions
 - Indicating a broadening of the k_{\perp} distributions from UPC to central collisions

collisions entral collisions

Investigation of dip

- See if any systematic modification of the UPC distribution can reproduce centrality dependence.
- Parameterize UPC distribution as sum of two gaussians
- Refit the distributions in other centralities as a smeared+shifted version of the UPC distribution

Investigation of dip

- See if any systematic modification of the UPC distribution can reproduce centrality dependence.
- Parameterize UPC distribution as sum of two gaussians
- Refit the distributions in other centralities as a smeared+shifted version of the UPC distribution
- Fits work reasonably well!

Quantifying the shift

- Left plot: Locate most-probable value of k_{\perp} distributions.
- Right plot : Most probable value as function of centrality.
- Most probable value changes from 0 MeV in UPC to 36 MeV in 0-5% central collisions

Rapidity separation vs shape for k

Prediction from Klein and collaborators (Phys. Rev. Lett. 122, 132301)

- If broadening was caused by deflection from magnetic field, it should increase with rapidity separation between muons
- No clear dependence of shape on rapidity separation between muons observed

20

Comparison to QED Calculations

- QED Calculation from W. Zha *et.al* (*Phys. Lett. B* 800 (2020) 135089)
 - Qualitatively reproduces dip (compared with prior data from *Phys. Rev. Lett.* 121 (2018) 212301)
- Broadening and depletion entirely reproduced by impact-parameter dependence of EM Fields

Summarv

- Measured yields and distributions of dimuons from $\gamma\gamma \rightarrow \mu^+\mu^-$ processes in Pb+Pb collisions
 - In UPC and non-UPC collisions
- Removed background contributions in non-UPC events via a template-fitting method
- Distributions for Acoplanarity and k₁ show significant centrality dependence
 - Develop a broadening with increasing centrality and a depletion at $k_{\perp}=0$
 - Most probable value of k_{\perp} in 0-5% central collisions is at 36 MeV
- Acoplanarity distributions show a $p_{\rm T}$ dependence while k_{\perp} distributions do not.
 - Consistent with a process that imparts a momentum kick to the outgoing muons
 - Although QED calculations accounting for impact parameter dependence qualitatively reproduce the broadening