Suppression and elliptic flow of bottomonia in heavy ion collisions at CMS

Jared Jay
 UCDAVIS

April 13, 2021

Outline

(1) Introduction
(2) Quarkonia Suppression
(3) Elliptic Flow

4 Summary

The Quark-Gluon Plasma

■ Our research seeks to narrow down the QCD equation of

QCD Phase Diagram state, and study the properties of the QGP phase, including:

- Initial-state temperature
- Viscosity

■ Density

- etc.

■ We can create the QGP by

colliding heavy ions (like Pb) at high energies at the LHC.

Heavy lons

Evolution of a heavy-ion collision

The CMS Detector

Quarkonia Suppression

Why use heavy quarkonia ($c \bar{c}$ and $b \bar{b}$)?
■ Di-muon decay channel. \rightarrow Easy for CMS to detect
■ Made of colored objects. \rightarrow Interact with the QGP
■ High mass (especially Υ) compared to the QGP temperatures means production is dominated by the initial hard scatterings.
\rightarrow Good probe of initial state
■ Υ has 3 states which melt at different temperatures. \rightarrow We can observe sequential suppression

Quarkonia Suppression

■ Heavy quarkonia yields are observed to be suppressed in PbPb compared to pp.

- The ratio of the Υ yield observed in PbPb compared to what we would expect from a superposition of pp collisions is called the Nuclear Modification Factor, $R_{A A}$.
■ In the case of $\mathrm{pPb}: R_{p A}$

(Sirunyan, Albert M et al., arXiv:1805.09215, 2018)

Quarkonia Suppression

What causes the suppression? QGP Effects

- Color screening.
- Regeneration/Recombination.

Cold nuclear matter (CNM)

Effects

- Shadowing and Anti-shadowing.
- Energy loss.
- Co-movers.

CNM and QGP effects can be separated by comparing PbPb and pPb systems with pp.

Results: Quarkonia Suppression

■ $R_{p P b}$ tends to increase with p_{T}.
■ Higher states are more suppressed.

Results: Quarkonia Suppression

■ Suppression is significantly less pronounced than in PbPb for all 3 states, presumably due to the QGP effects in PbPb .
■ Higher states are more suppressed.

Results: Quarkonia Suppression

■ Comparison with predictions based on CNM effects such as shadowing (EPS09 NLO) and energy loss (E. Loss).
■ There is good agreement with the $\Upsilon(1 S)$ but not the other 2 states.

Results: Quarkonia Suppression

- Comparison with predictions which incorporate sequential suppression via the comover interaction model (CIM) effect.
- These predictions are consistent with data for all three states.

Elliptic Flow

(a)

- Two-particle correlations in PbPb collisions exhibit long-range correlations not seen in pp collisions.
■ \Longrightarrow collective elliptic flow.

Elliptic Flow

$$
\begin{gathered}
\frac{d N}{d \phi} \propto 1+2 v_{2} \cos (2(\phi-\psi))+2 v_{4} \cos (4(\phi-\psi)) \\
v_{n}=\langle\cos (n(\phi-\psi))\rangle
\end{gathered}
$$

Elliptic Flow

Upsilon v2 Predictions:

Du et al.(2017)Du, Rapp, and He

- The v_{2} of Υ 's is expected to be very small (<0.05).
- The v_{2} of the $\Upsilon(2 \mathrm{~S})$ is expected to be about twice as large as the v_{2} of the $\Upsilon(1 \mathrm{~S})$.

Elliptic Flow

Event-plane method for calculating v_{2} :

yieldsVsPhi

■ Determine the event plane for each collision event.

- Fit the invariant mass spectrum in all the kinematic bins.

■ Split each bin into $4 \Delta \phi$ bins and fit them to extract the azimuthal distribution of upsilon yields.
\square Fit the distribution $\frac{1}{N_{\text {total }}^{\Upsilon}} \frac{d N^{\Upsilon}}{d \phi}$ vs $\Delta \phi$ with the function $1+2 v_{2} \cos (2 \Delta \phi)$.

Elliptic Flow

Additional analysis steps:
■ Re-centering of the event plane
■ Flattening of the event plane
■ Event-plane resolution correction using the three-sub-event technique
■ Acceptance and efficiency corrections

Results: Elliptic Flow

PbPb $1.6 \mathrm{nb}^{-1}(5.02 \mathrm{TeV})$

- The elliptic flow is small and consistent with zero.

■ This is expected for highly suppressed particles.

Results: Elliptic Flow

■ Comparison to theoretical predictions.

Results: Elliptic Flow Ratio

■ The ratio of v_{2} of the $\Upsilon(2 S)$ over v_{2} of the $\Upsilon(1 S)$ versus p_{T} hints at a value of about 2 .

■ Warrants a future study with more data.

Summary

■ The nuclear modification factors $R_{A A}$ and $R_{p A}$ of Υ mesons, measured from $\mathrm{PbPb}, \mathrm{pPb}$, and pp collisions at $\sqrt{s_{N N}}=5.02$ TeV at CMS, demonstrate that Υ 's are suppressed in heavy ion collisions compared to pp , with significantly more suppression in PbPb compared to pPb .

- Models which incorporate sequential suppression of bottomonia are in better agreement with the data than those which only assume initial-state modification.
- The second-order Fourier coefficients (v2) characterizing the elliptic flow of Υ 's in PbPb have been reported, and they are consistent with zero.
\square The v_{2} of the $\Upsilon(2 S)$ appears to be about twice as large as the v_{2} of the $\Upsilon(1 \mathrm{~S})$ versus p_{T}, in agreement with theoretical predictions, but more data is needed to confirm this.

Backup

The Quark-Gluon Plasma

- At high temperatures and densities, hadronic matter undergoes a phase transition to a state of deconfined quarks and gluons called the quark-gluon plasma (QGP).
■ The plot on the right demonstrates this phase transition using calculations from Lattice QCD.

The CMS Detector

Quarkonia Suppression

■ Heavy quarkonia yields are observed to be suppressed in PbPb compared to pp.

- Nuclear Modification Factor: $R_{A A}=\frac{N^{A A}\left(p_{T}, y\right)}{\left\langle T^{A A}\right\rangle \sigma^{P P}\left(p_{T}, y\right)}$
- In the case of pPb :

$$
R_{p A}=\frac{\sigma^{p A}\left(p_{T}, y\right)}{A \sigma^{p p}\left(p_{T}, y\right)}
$$

where $\sigma^{p p}\left(p_{T}, y\right)=\frac{N^{p p} /(a \cdot \varepsilon)}{\mathcal{L}_{\text {int }} \Delta p_{T} \Delta y}$.

(Sirunyan, Albert M et al., arXiv: $1805.09215,2018$)

Quarkonia Suppression

QGP Effects

- Color screening.
- Regeneration/Recombination.

Burnier, Y., Kaczmarek, O. \& Rothkopf, A. J. High Energ. Phys. (2015) 2015: 1.

Quarkonia Suppression

Cold Nuclear Matter (CNM) Effects

- Shadowing and Anti-shadowing.
- Energy loss.
- Co-movers.

(Ann.Rev.Nucl.Part.Sci. 62 (2012) 337-359)

Elliptic Flow

Elliptic flow predictions come from hydrodynamics simulations. Therefore, measured v_{2} tells us about the inputs to those simulations, including:

- viscosity
- equation of state

■ speed of sound in medium
■ level of thermalization

Song H, et al. Phys. Rev. Lett. 106:192301 (2011)

Elliptic Flow

The Event-plane method:
The reaction plane angle ψ must be determined event by event, using energy deposited in a region of the HF spanning

$$
-5<\eta<-3(3<\eta<5)
$$

$$
\Psi_{2}^{\prime}=\frac{1}{2} \tan ^{-1} \frac{\sum_{i} w_{i} \sin \left(2 \phi_{i}\right)}{\sum_{i} w_{i} \cos \left(2 \phi_{i}\right)}
$$

