Photon Mediated Processes from Strong Electromagnetic Fields

James Daniel Brandenburg

Goldhaber Fellow, Brookhaven National Laboratory & CFNS Stony Brook

APS Topical Group on Hadronic Physics

April 13 – 16, 2021

Photon Mediate Processes in HICs

- Photons from Strong Fields
- Recent Experimental Catalysts
 - Photon-mediated processes in Hadronic collisions
 - Transverse Momentum Broadening
 - Photon Polarization
- Two-photon processes
 - Mapping electromagnetic field
 - Axion Search
- Photo-nuclear processes
 - Photon-polarization (a new observable)
- Summary and a Look Forward

Based on:

"Mapping the Electromagnetic Fields of Heavy-Ion Collisions with the Breit-Wheeler Process" JDB, W Zha, Z Xu arXiv:2103.16623

Photons from Strong Fields in Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA): \rightarrow In a specific phase space, transverse EM fields can be quantized as a flux of **quasi-real photons** Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612 $n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$

Recent experimental result

\rightarrow Breakdown of traditional EPA?

- Test the assumption used in common EPA implementations
- Compare with full QED calculations

Experimental Catalysts

Photons from Strong Fields in Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic fields

- $\gamma \gamma \rightarrow l^+ l^-$: photon-photon fusion
 - One photon from the field of each nucleus interacts
 - Second order process in α
 - $Z\alpha \approx 1 \rightarrow$ High photon density with highly charged nuclei
- $\gamma \mathbb{P} \rightarrow \rho^0, J/\psi, etc.$: Photo-nuclear production of vector mesons ($J^P = 1^-$)
 - Photon from the EM field of one nucleus fluctuates to a $q\bar{q}$ pair, interacts with pomeron
 - Photon quantum numbers $J^{PC} = 1^{--}$

S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D **4**, 1532 (1971). M. Vidović, M. Greiner, C. Best, and G. Soff, Phys. Rev. C **47**, 2308 (1993).

Photo-Processes in **Hadronic Collisions**

$\gamma \gamma \rightarrow l^+ l^-$ in 60 – 80% Central

 $\gamma \mathbb{P} \rightarrow J/\psi$ in 70 – 90% Central

- Significant excess yields at low transverse momentum
 - Very small photon p_T from coherent EM field
- Clear signature of photon mediated processes, even in hadronic collisions

Photon-Photon processes in **Central Collisions**

• ATLAS: able to measure $\gamma \gamma \rightarrow \mu^+ \mu^-$ even in central collisions

- Stringent test of impact parameter dependence in $\underline{b} \rightarrow 0$ fm collisions
- Significant broadening of α in central collisions compared to STARLight

What is the source of this broadening?

April 16, 2021 ATLAS, Phys. Rev. Lett. 121, 212301 (2018) J. D. Brandenburg

Photon-Photon processes in **Central Collisions**

10 Stringent test of impact parameter $dN_{\mu^+\mu^-}^{c=(5-10)\%}$ 9 dependence in $\underline{b} \rightarrow 0^{h}$ fm collisions 8 Significant Groaderfing Gr, & in tentral $p_{t,\mu}$ 7 collisions compared to STARLight J ∕N^{b=all} 6 Well describe by full QED & Wigner € 5 function calculations 3 \rightarrow Both yield and α distribution • Access photon Wigner distribution $\rightarrow \text{Photon Flux in terms of } n(\omega, b, q) = 0.002 \text{ } 0.004 \text{ } 0.006 \text{ } 0.008 \text{ } 0.011 \text{ } 0.012 \text{ } 0.014 \text{ } n(\omega, b, q) = 0.002 \text{ } 0.002 \text{$ Can we be sure it is not primarily a final state effect (interaction with QGP)? S. R. Klein, et. al, PRL. 122, (2019), 132301 ATLAS PRL. 121 (2018), 212301 DzBrahdenburg ATLAS prelim.

Testing Impact Parameter Dependence

Creative new ways to test **impact parameter dependence** of photons in UPC

Other unique measurements from STAR, ATLAS, ALICE ...

• Use neutron spectra to access impact parameter dependence

Neutron Spectra in UPC \Leftrightarrow Glauber in HICs

- Strong impact parameter dependence
- \rightarrow Traditional EPA fails to describe data
- \rightarrow Trend agrees with full QED calculations

What do we learn?

 \rightarrow Photon momenta results from field geometry

Photon Polarization

Photon Polarization:

- Polarization vector is defined by the semi-classical EM fields
- Experimental signature of polarization: $\cos 4\phi$ modulation
- Final cos 4φ modulation depends precisely on the field strength and extent in space

Photon Polarization

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D 101, 034015 (2020). Photon Polarization:

- Polarization vector is defined by the semi-classical EM fields
- Experimental signature of polarization: $\cos 4\phi$ modulation
- Final $\cos 4\phi$ modulation depends precisely on the field strength and extent in space

Vacuum polarization effect, first laboratory evidence for vacuum birefringence

STAR, arXiv : 1910.12400 JDB, W Zha, Z Xu, arXiv:2103.16623 Phys. Rev. D 90, 045025

Thesis J Toll, ProQuest.https://search.proquest.com/docview/301990593/

J. D. Brandenburg

Applications

Mapping of EM Field Distribution

STAR, arXiv : 1910.12400 JDB, W Zha, Z Xu, arXiv:2103.16623

- Using STAR's measurement of $\gamma \gamma \rightarrow e^+ e^-$ (in UPC)
- Precision transverse momentum + polarization = constrain field map in 2D

- More measurements needed to constrain event-by-event fluctuations of EM fields
- Novel input for magnetic-field driven phenomena

April 16, 2021

Light-by-Light Scattering & the Search for Axions

• Light-by-Light scattering through Axion-like particles:

 $\gamma\gamma \to a \to \gamma\gamma$

Photon-ALP Lagrangian density[1]:

$$\mathcal{L}_{a\gamma\gamma} = \frac{1}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu} = \frac{1}{\Lambda} a \mathbf{E} \cdot \mathbf{B}$$

- Due to quantum spin-momentum correlations, axion production should be correlated with impact parameter direction (due to $E \cdot B$ coupling)
- Access through photon polarization sensitive differential measurements
- More direct than total cross section

JDB, W Zha, Z Xu, arXiv:2103.16623

Prospects for Measurements of Photon-Induced Processes in Ultra-Peripheral Collisions of Heavy Ions with the ATLAS Detector in the LHC Runs 3 and 4 - CERN Document Server. <u>http://cds.cern.ch/record/2641655/files/</u>.

Bauer, M., Neubert, M. & Thamm, A. Collider probes of axion-like particles.
J. High Energ. Phys. 2017, 44 (2017).
ATLAS, Nature Physics 13 (2017), 852
ATLAS, Phys. Rev. Lett. 123, 052001 (2019).
CMS, Physics Letters B 797, 134826 (2019).

Photonuclear Polarization Interference Effect

- Nuclei "take-turns" emitting photon vs. Pomeron
- Diffractive Photonuclear measurements
 - → mainstay since HERA Eur.Phys.J.C46:585-603,2006 Phys.Rev.D 50 (1994) 5518-5534 Phys.Lett.B 483 (2000) 23-35

Access to photon polarization interference is sensitive to:

- → Details of nuclear geometry (gluon distribution)
- → Impact Parameter (spatial distribution)

Polarization interference $\rightarrow \cos 2\phi$ modulation, <u>A new tool for studying nuclei</u>

JDB Initial Stages 2021

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

April 16, 2021

$\cos 2\Delta \phi \ vs. \rho^0 \ p_T$ in U+U and Au+Au

- Strong $\cos 2\Delta\phi$ modulation observed at $p_T < \sim 60 \text{ MeV}/c$ similar to Au+Au
- Systematic uncertainty shown in blue band
- U+U and Au+Au show similar structure
- Details of interference sensitive to gluon distribution within nuclei

Summary and Outlook

- New experimental results \rightarrow crucial input for theoretical treatment
 - Lots of progress, sadly can only show a few results

More details in JDB, W Zha, Z Xu arXiv:2103.16623

Summary and Outlook

- New experimental results \rightarrow crucial input for theoretical treatment
 - Lots of progress, sadly can only show a few results
- Photon polarization and Transverse momentum broadening $(\gamma \gamma \rightarrow l^+ l^-)$
- \rightarrow Novel input: Map in 2D the ultra-strong EM fields
- → More measurements needed to constrain event-by-event fluctuations

More details in JDB, W Zha, Z Xu arXiv:2103.16623

Summary and Outlook Thank you!

- New experimental results \rightarrow crucial input for theoretical treatment
 - Lots of progress, sadly can only show a few results
- Photon polarization and Transverse momentum broadening $(\gamma \gamma \rightarrow l^+ l^-)$
- \rightarrow Novel input: Map in 2D the ultra-strong EM fields
- → More measurements needed to constrain event-by-event fluctuations
- Photon polarization in Light-by-Light scattering: Provide differential approach + more sensitivity for axion-like particle searches
- Photon polarization interference in photonuclear interactions
- → New observable for a long-standing process + important for the future (EIC)

More details in JDB, W Zha, Z Xu arXiv:2103.16623

Light-by-Light Scattering

ATLAS Observed Light-by-Light Scattering in UPCs:

- Purely quantum mechanical process (α_{em}^4)
 - Light-by-Light scattering involves <u>real photons by</u>

<u>definition</u>

 Standard Model process proceeds through loop of charged particles (lepton, quarks, W[±])

ATLAS, *Nature Physics* 13 (2017), 852 ATLAS, Phys. Rev. Lett. **123**, 052001 (2019). CMS, Physics Letters B **797**, 134826 (2019).

[1] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301[2] ATLAS Phys. Rev. Lett. 121 (2018), 212301

Coulomb Scattering through QGP

• Charged particles may scatter off charge centers in QGP, modifying primordial pair P_{\perp} ?

Assumptions:

- 1. Primordial distribution given by STARLight
- 2. Daughters traverse medium

ATLAS Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$

arXiv:1806.08708 Phys. Rev. Lett. 121, 212301 (2018)

ATLAS Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$

arXiv:1806.08708 Phys. Rev. Lett. 121, 212301 (2018)

Daniel Brandenburg | BNL (CFNS)

Centrality [%] 23