APS GHP Meeting, April 13-16, 2021

Mass radius of the proton

D. Kharzeev

Based on: DK, arXiv:2102.00110

Stony Brook University Center for Nuclear Theory

1

Supported by the Office of Science, US Department of Energy

Gravitational formfactors and the mass distribution

What is the origin of the proton mass?

Image: CERN

2

How is the mass distributed inside the proton?

Is it associated with quarks ("visible matter") or with gluons ("dark matter")?

How can we measure the mass distribution?

The mass distribution in General Relativity

Consider Einstein gravity:

Ricci curvature ${ \rightarrow }\,R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G \;T_{\mu\nu}$ tensor

Take the trace with metric tensor:

$$-R = 8\pi G T \qquad T \equiv T^{\mu}_{\mu}$$

1881-1923

m Albert 1879

3

Albert Einstein 1879-1955

0

Non-relativistic, weak gravitational field limit:

$$g_{00} = 1 + 2\varphi,$$
 $T^{\nu}_{\mu} = \mu \ u_{\mu}u^{\nu},$ $u_0 = u^0 = 1,$
 $u_i = 0.$

Therefore, in this limit, the distributions of mass and of T coincide:

$$T_0^0 = \mu;$$
 $T \equiv T_\mu^\mu = T_0^0 = \mu$

⁴⁵ Einstein, Albert and Fokker, Adriann, D., "Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls", *Annelen der Physik* 44, 1914, pp. 321-328; p. 321.

The mass distribution in General Relativity

Newtonian limit:

$$R_0^0 = \frac{\partial^2 \varphi}{\partial x^{\mu 2}} \equiv \Delta \varphi,$$

Einstein equation:

$$R_{\mu\nu} = 8\pi G (T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T);$$

The only non-vanishing component:

$$R_0^0 = 4\pi G\mu,$$

Isaac Newton 1643-1727

Therefore, the distribution of mass determines the gravitational potential:

Gravitational formfactors and the mass distribution

The mass distribution is encoded in the gravitational formfactors.

For the spin ¹/₂ nucleon, 3 formfactors appear:

H. Pagels '66, A. Pais, S. Epstein '49

 $\sum_s \bar{u}(p,s) u(p,s) = (\hat{p}\!+\!M)/2M$

Satisfied for on-shell nucleons (use Dirac equation)

$$p_1^2 = p_2^2 = M^2$$

Gravitational formfactors and the mass distribution

For the spin ½ nucleon, 3 formfactors appear:

(no G_1 for spin 0)

6

$$\langle \mathbf{p}_1 | T_{\mu\nu} | \mathbf{p}_2 \rangle = \left(\frac{M^2}{p_{01} p_{02}} \right)^{1/2} \frac{1}{4M} \bar{u}(p_1, s_1) \Big[G_1(q^2)(p_\mu \gamma_\nu + p_\nu \gamma_\mu) + G_2(q^2) \frac{p_\mu p_\nu}{M} + G_3(q^2) \frac{(q^2 g_{\mu\nu} - q_\mu q_\nu)}{M} \Big] u(p_2, s_2),$$

Zero momentum transfer q
ightarrow 0

$$\langle \mathbf{p} | T_{\mu\nu} | \mathbf{p} \rangle = \left(\frac{M^2}{p_0^2} \right)^{1/2} \bar{u}(p,s) u(p,s) \frac{p_{\mu} p_{\nu}}{M^2} \left[G_1(0) + G_2(0) \right]$$

(no "stress" G₃)

In the rest frame of the nucleon:

the Hamiltonian

$$H = \int d^3x \ T_{00}(x)$$

$$\langle \mathbf{p} = 0 | T_{00} | \mathbf{p} = 0 \rangle = M$$
$$\bigcup$$
$$G_1(0) + G_2(0) = M.$$

Formfactor of the trace of the energy-momentum tensor

Let us call it "scalar gravitational formfactor", as it would be a gravitational formfactor in the scalar model of gravity: Nordstrom 1912 Einstein 1913

$$T \equiv T^{\mu}_{\mu}$$

$$\langle \mathbf{p}_1 | T | \mathbf{p}_2 \rangle = \left(\frac{M^2}{p_{01} \ p_{02}} \right)^{1/2} \ \bar{u}(p_1, s_1) u(p_2, s_2) \ G(q^2),$$

Scalar gravitational formfactor:

$$G(q^2) = G_1(q^2) + G_2(q^2) \left(1 - \frac{q^2}{4M^2}\right) + G_3(q^2) \frac{3q^2}{4M^2}$$

In the rest frame of the nucleon:

$$\langle \mathbf{p} = 0 | T | \mathbf{p} = 0 \rangle = \langle \mathbf{p} = 0 | T_{00} | \mathbf{p} = 0 \rangle = M,$$

$$\bigcup_{G(0) = M}$$

7

How to define the mass distribution in the nucleon?

At small momentum transfer $|q^2| \ll M^2$,

the formfactor of T_{00} and the scalar gravitational formfactor coincide if

$$\frac{G_i(0)}{4M} \ll \frac{dG_i}{dt}\Big|_{t=0} \equiv G_i(0)/m_i^2$$

The origin of the difference is frame dependence of T_{00} :

In Breit frame, $\mathbf{p}_2 = \frac{1}{2}\mathbf{q}$, $\mathbf{p}_1 = -\frac{1}{2}\mathbf{q}$ the proton is moving with

$$\gamma = E/M = \sqrt{M^2 + (q^2/4)}/M = \sqrt{1 + q^2/(4M^2)},$$

so for $q \equiv |\mathbf{q}| \simeq m_i$ it is Lorentz-contracted with

$$1/\gamma \simeq (1 + m_i^2/(4M^2))^{-1/2}$$

For massive bodies, $m_i \ll 2M$ – size much larger than the Compton wavelength! In this limit, the formfactors of T_{00} and T coincide. [the proton: $8M^2 \gg m_s^2$] See R.L. Jaffe, PRD103(2021) for related discussion How to define the mass distribution in the nucleon?

At small momentum transfer $|q^2| \ll M^2$, $\frac{G_i(0)}{4M} \ll \frac{dG_i}{dt}|_{t=0}$ the formfactor of T_{00} and the scalar gravitational formfactor coincide, thus the scalar gravitational formfactor can be used to define the <u>mass radius of the proton</u>:

In the relativistic region (mass -> energy), it is natural to consider the scalar gravitational formfactor, as T is the Lorentz scalar

The trace of the energy-momentum tensor also plays a special role – it is a generator of dilatations. Its formfactor thus carries information about the Renormalization Group (RG) evolution inside the nucleon.

Scale invariance

Scale transformations (dilatations) are defined by

$$x \to e^{\lambda} x$$

the corresponding dilatational current is

$$s^{\mu} = x_{\nu}T^{\mu\nu}$$

Hermann Weyl (1885-1955)

It is conserved (a theory is scale-invariant) if the energy-momentum is $\partial_{\mu}s^{\mu}$ = traceless:

$$\partial_{\mu}s^{\mu} = T^{\mu}_{\mu} \equiv T$$

Scale invariance

A scale-invariant theory cannot contain massive particles, all particles must be massless

For example, in Maxwell electrodynamics with action

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

the energy-momentum is traceless: $T^{\mu}_{\mu}=0$ (massless photons)

Note: because of this, in scalar gravity (Nordstrom, 1912; Einstein, 1913) there would be no light bending by massive bodies!

Scale anomaly in QCD

The quantum effects (loop diagrams) modify , the expression for the trace of the energy-momentum tensor:

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g} \ G^{\mu\nu a} G^{a}_{\mu\nu} + \sum_{l=u,d,s} m_{l} (1+\gamma_{m_{l}}) \bar{q}_{l} q_{l} + \sum_{h=c,b,t} m_{h} (1+\gamma_{m_{h}}) \bar{Q}_{h} Q_{h}$$

Running coupling -> dimensional transmutation -> mass scale

Gross, Wilczek;
$$eta(g)=-brac{g^3}{16\pi^2}+...,\ b=9-rac{2}{3}n_h,$$
 Politzer

Ellis, Chanowitz; Crewther; Collins, Duncan, Joglecar; ...

had μ

At small momentum transfer, heavy quarks decouple:

$$\begin{split} \sum_{h} m_{h} \bar{Q_{h}} Q_{h} \to -\frac{2}{3} & n_{h} \frac{g^{2}}{32\pi^{2}} G^{\alpha\beta a} G^{a}_{\alpha\beta} + \dots \\ \text{so only light quarks enter the final expression} & \text{Shifman,} \\ \nabla_{\text{ainshtein}} Z_{\text{akharov '78}} & T^{\mu}_{\mu} = \frac{\tilde{\beta}(g)}{2g} & G^{\mu\nu a} G^{a}_{\mu\nu} + \sum_{l=u,d,s} m_{l} (1+\gamma_{m_{l}}) \bar{q_{l}} q_{l}, \\ Z_{\mu} & Z_{\mu\nu} & Z_{\mu\nu} + \sum_{l=u,d,s} m_{l} (1+\gamma_{m_{l}}) \bar{q_{l}} q_{l}, \end{split}$$

The proton mass

At zero momentum transfer, the matrix element of the trace of the energy-momentum tensor defines the mass of the proton:

$$\langle \mathbf{p} = 0 | T | \mathbf{p} = 0 \rangle = \langle \mathbf{p} = 0 | T_{00} | \mathbf{p} = 0 \rangle = M,$$

$$T^{\mu}_{\mu} = \frac{\tilde{\beta}(g)}{2g} \ G^{\mu\nu a} G^{a}_{\mu\nu} + \sum_{l=u,d,s} m_{l} (1+\gamma_{m_{l}}) \bar{q}_{l} q_{l},$$

In the chiral limit, the only contribution is from gluons!

How to measure the mass distribution inside the proton?

No dilatons available... next best thing: a heavy quarkonium

QCD multipole expansion:

Voloshin '78; Appelquist, Fischler '78; Gottfried '78; Peskin '79; Novikov, Shifman '81; Leutwyler '81, ...

M.B. Voloshin 1953-2020

$$\begin{split} g^{2}\mathbf{E}^{a2} &= \frac{g^{2}}{2}(\mathbf{E}^{a2} - \mathbf{B}^{a2}) + \frac{g^{2}}{2}(\mathbf{E}^{a2} + \mathbf{B}^{a2}) \\ &= -\frac{1}{4}g^{2}G^{a}_{\alpha\beta}G^{a\alpha\beta} + g^{2}(-G^{a}_{0\alpha}G^{a\alpha}_{0} + \frac{1}{4}g_{00}G^{a}_{\alpha\beta}G^{a\alpha\beta}) = \frac{8\pi^{2}}{b}\theta^{\mu}_{\mu} + g^{2}\theta^{(G)}_{00} \end{split}$$

$$\theta^{\mu}_{\mu} \equiv \frac{\beta(g)}{2a} G^{a\alpha\beta} G^a_{\alpha\beta} = -\frac{bg^2}{32\pi^2} G^{a\alpha\beta} G^a_{\alpha\beta} , \quad \theta^{(G)}_{\mu\nu} \equiv -G^a_{\mu\alpha} G^{a\alpha}_{\nu} + \frac{h^4}{4} g_{\mu\nu} G^a_{\alpha\beta} G^{a\alpha\beta}_{\alpha\beta}$$

Near threshold, dominance of $g^2 \mathbf{E}^{a2} = \frac{8\pi^2}{h} \theta^{\mu}_{\mu} + g^2 \theta^{(G)}_{00}$

р

Assuming the validity of vector meson dominance, can relate photoproduction to quarkonium scattering amplitude and probe the mass of the proton

DK '96; DK, Satz, Syamtomov, Zinovjev '99

Other approaches to threshold photoproduction:

Hatta, Yang '18; Hatta, Rajan, Yang '19; Mamo, Zahed '19 Recent: Ji, 2102.07830; Gao, Ji, Liu, 2103.11506; Sun, Tong, Yuan⁵, 2103.12047...

$$t_{min} = -\frac{M_{\psi}^2 M}{M_{\psi} + M} \simeq -2.23 \text{ GeV}^2 \simeq -(1.5 \text{ GeV})^2$$

-> VDM questionable. but, scanning the energy range near the threshold, we measure the scalar gravitational formfactor – can extract the proton mass distribution! ¹⁶

The scalar operator dominates for small velocity of heavy quarkonium;

Limiting $V_{J/\psi} < 0.2$, (corrections ~ $v_{J/\psi}^2$) the optimal kinematical region is:

$$E_{cm} < 4.25 \text{ GeV}$$

 $E_{\gamma} < 9.2 \text{ GeV}$
-t < 6 GeV²

The amplitude:
$$\mathcal{M}_{\gamma P \to \psi P}(t) = -Qe \ c_2 \ 2M \ \langle P' | g^2 \mathbf{E}^{a2} | P \rangle,$$

Editors' Suggestion

First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton

A. Ali,¹⁰ M. Amaryan,²² E. G. Anassontzis,² A. Austregesilo,³ M. Baalouch,²² F. Barbosa,¹⁴ J. Barlow,⁷ A. Barnes,³ E. Barriga,⁷ T. D. Beattie,²³ V. V. Berdnikov,¹⁷ T. Black,²⁰ W. Boeglin,⁶ M. Boer,⁴ W. J. Briscoe,⁸ T. Britton,¹⁴ W. K. Brooks,²⁴ B. E. Cannon,⁷ N. Cao,¹¹ E. Chudakov,¹⁴ S. Cole,¹ O. Cortes,⁸ V. Crede,⁷ M. M. Dalton,¹⁴ T. Daniels,²⁰ A. Deur,¹⁴ S. Dobbs,⁷ A. Dolgolenko,¹³ R. Dotel,⁶ M. Dugger,¹ R. Dzhygadlo,¹⁰ H. Egiyan,¹⁴ A. Ernst,⁷ P. Eugenio,⁷ C. Fanelli,¹⁶ S. Fegan,⁸ A. M. Foda,²³ J. Foote,¹² J. Frye,¹² S. Furletov,¹⁴ L. Gan,²⁰ A. Gasparian,¹⁹ V. Gauzshtein,^{25,26} N. Gevorgyan,²⁷ C. Gleason,¹² K. Goetzen,¹⁰ A. Goncalves,⁷ V.S. Goryachev,¹³ L. Guo,⁶ H. Hakobyan,²⁴ A. Hamdi,¹⁰ S. Han,²⁹ J. Hardin,¹⁶ G. M. Huber,²³ A. Hurley,²⁸ D. G. Ireland,⁹ M. M. Ito,¹⁴ N. S. Jarvis,³ R. T. Jones,⁵ V. Kakoyan,²⁷ G. Kalicy,⁴ M. Kamel,⁶ C. Kourkoumelis,² S. Kuleshov,²⁴ I. Kuznetsov,^{25,26} L. Larin,¹⁵ D. Lawrence,¹⁴ D. I. Lersch,⁷ H. Li,³ W. Li,²⁸ B. Liu,¹¹ K. Livingston,⁹ G. J. Lolos,²³ V. Lyubovitskij,^{25,26} D. Mack,¹⁴ H. Marukyan,²⁷ V. Matveev,¹³ M. McCaughan,¹⁴ M. McCracken,³ W. McGinley,³ J. McIntyre,⁵ C. A. Meyer,³ R. Miskimen,¹⁵ R. E. Mitchell,¹² F. Mokaya,⁵ F. Nerling,¹⁰ L. Ng,⁷ A. I. Ostrovidov,⁷ Z. Papandreou,²³ M. Patsyuk,¹⁶ P. Pauli,⁹ R. Pedroni,¹⁹ L. Pentchev,^{14,*} K. J. Peters,¹⁰ W. Phelps,⁸ E. Pooser,¹⁴ N. Qin,²¹ J. Reinhold,⁶ B.G. Ritchie,¹ L. Robison,²¹ D. Romanov,¹⁷ C. Romero,²⁴ C. Salgado,¹⁸ A. M. Schertz,²⁸ R. A. Schumacher,³ J. Schwiening,¹⁰ K. K. Seth,²¹ X. Shen,¹¹ M. R. Shepherd,¹² E. S. Smith,¹⁴ D. I. Sober,⁴ A. Somov,¹⁴ S. Somov,¹⁷ O. Soto,²⁴ J. R. Stevens,²⁸ I. I. Strakovsky,⁸ K. Suresh,²³ V. Tarasov,¹³ S. Taylor,¹⁴ A. Teymurazyan,²³ A. Thiel,⁹ G. Vasileiadis,² D. Werthmüller,⁹ T. Whitlatch,¹⁴ N. Wickramaarachchi,²² M. Williams,¹⁶ T. Xia

(GlueX Collaboration)

Need to focus on the threshold region!

 $E_{cm} < 4.25 \text{ GeV}$ $E_{\gamma} < 9.2 \text{ GeV}$

20

Threshold photoproduction of quarkonium: the effect of the scalar gravitational formfactor

The scalar gravitational formfactor can be constrained theoretically by using:

- i) dispersion relations;
- ii) low-energy theorems of broken scale invariance;

iii) experimental data on $\pi\pi$ phase shifts and scalar mesons

See e.g. However, as a first step, can try a simple Fujii, DK'99 : 0.1 dipole formfactor of the type used for electromagnetic formfactor:

$$G(t) = \frac{M}{(1 - t/m_s^2)}$$
 radius

Dipole formfactor was also used for 2-gluon coupling in perturbative models See e.g. but: T formfa

but: T formfa²¹tor cannot be computed perturbatively

Differential cross section

DK, arXiv:2102.00110

The proton mass radius

The r.m.s. "proton mass radius" from GlueX data:

DK, arXiv:2102.00110

$$R_{\rm m} \equiv \sqrt{\langle R_{\rm m}^2 \rangle} = 0.55 \pm 0.03 \text{ fm}$$

Compare to the proton charge radius:

 $\bar{\mathbf{R}}_{\mathrm{c}} \equiv \sqrt{R_{c}^{2}} = 0.8409 \pm 0.0004 \text{ fm}$

See J.Bernauer, EPJ 234 (2020) for review

A more compact mass distribution? Need more data!

VALUE (fm)	DOCUMEN	T ID T	ECN COMMEN	Т
0.8409 ± 0.0004	OUR AVERAGE			
0.833 ±0.010	1 BEZGINOV	2019 L/	ASR 2S-2P trans	sition in H
$0.831 \pm 0.007 \pm 0.012$	2 XIONG	2019 S	PEC $e p \rightarrow ep$ for	rm factor
$0.84087 \pm 0.00026 \pm 0.00029$	ANTOGNIN	l 2013 L/	ASR μp -atom La	amb shift
• • • We do not use the following data	for averages, fits, lim	its, etc. • • •		
0.877 ±0.013	3 FLEURBAE	Y 2018 L	ASR 1S-3S trans	sition in H
0.8335 ± 0.0095	4 BEYER	2017 L/	ASR 2S-4P trans	sition in H
0.8751 ±0.0061	MOHR	2016 R	VUE 2014 COD/	ATA value
$0.895 \pm 0.014 \pm 0.014$	5 LEE	2015 S	PEC Just 2010 M	Mainz data
0.916 ±0.024	LEE	2015 S	PEC World data	, no Mainz
0.8775 ±0.0051	MOHR	2012 R	VUE 2010 COD/	ATA, <i>ep</i> da
0.875 ±0.008 ±0.006	ZHAN	2011 S	PEC Recoil pola	rimetry
$0.879 \pm 0.005 \pm 0.006$	BERNAUEF	3 2010 S	PEC $e p \rightarrow ep$ for	m factor

2020 Review of Particle Physics.

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Some day: p MASS RADIUS in PDG?

Theoretical uncertainties

- Higher dimensional operators (suppressed by 1/m_c)
- Chiral limit (we omitted the scalar quark operator)
- Gluon operators with derivatives (~ 5% close to threshold)
- t-dependence of short-distance coefficient c_2 (~ t/4m_c²)
- Dipole parameterization of formfactor

Why is proton mass radius smaller than the charge radius?

Spectral representation -

EM formfactor: $M_{\rho} = 0.77 \text{ GeV}$

Scalar gravitational formfactor: scalar glueball M = 1.5 GeV

But: scalar gluon current mixes with the scalar quark current – $\sigma(500)$ is lighter than the ρ !

The real reason (?) – decoupling of Goldstone bosons:

$$\langle 0|T|\pi^+\pi^-\rangle = q^2 \qquad 25$$

DK, arXiv:2102.00110

Future measurements

- GlueX has 10 times more data (~ May 2021)
- Future: SoLID@Jlab (~ 2028), EIC (including Y !)
- Also: ultra-peripheral collisions at RHIC?

For a fixed invariant mass (cms energy), measure the angular distribution – differential cross section of photoproduction

Summary

- The proton mass to large extent originates from quantum anomalies
- The threshold photoproduction of J/ψ probes the mass distribution inside the proton; current data and a simple dipole model favor

$$R_{\rm m} \equiv \sqrt{\langle R_{\rm m}^2 \rangle} = 0.55 \pm 0.03 \text{ fm}$$

• We need a quantitative theory of the scalar gravitational formfactor and precise data at $E_{cm} < 4.3$ GeV to understand the mass distribution inside the proton, and the origin of the proton mass!