9th Workshop of the APS Topical Group on Hadronic Physics

New STAR results from RHIC Beam Energy Scan-II

Sooraj Radhakrishnan (for the STAR Collaboration) Kent State University/Lawrence Berkeley National Laboratory

physics APRILMEETING 2021

Supported in part by

Office of Science

Sooraj Radhakrishnan (for STAR Collaboration)

Outline of the talk

- Introduction
- STAR BES-II and FXT Programs
- New results on collectivity
- Strangeness production in high µ_B
 collisions
- Critical fluctuations
- Summary and Outlook

Sooraj Radhakrishnan (for STAR Collaboration)

Outline of the talk

Introduction

- STAR BES-II and FXT Programs
- New results on collectivity
- Strangeness production in high µB collisions
- Critical fluctuations
- Summary and Outlook

Exploring phase structure of QCD matter

Conjectured QCD Phase diagram

- What is the phase structure of QCD matter?
- Crossover transition into QGP phase predicted by lattice QCD at $\mu_B = 0$
- Many models predict a first order transition at finite μ_B . Critical point?
- Beam Energy Scan Program at RHIC to provide experimental access to nuclear matter properties at finite μ_B

Beam Energy Scan at RHIC

STAR: Phys. Rev. C 93, 014907 , STAR: Phys. Rev. Lett. 112,162301, STAR: Phys. Rev. Lett 126, 92301

Sooraj Radhakrishnan (for STAR Collaboration)

• Critical fluctuations, softening of EoS, disappearance of partonic collectivity/energy loss? STAR BES Phase-I (2009-10) Energies: 200 — 7.7 GeV, μ_B: ~20 — 420 MeV

STAR

STAR Detector Upgrades for BES-II

STAR Detector Upgrades for BES-II

- <u>*iTPC*</u>: Increased acceptance to $|\eta| < 1.5$, Better efficiency at low p_T , Improved dE/dx resolution
- **<u>EPD</u>: Independent centrality detector, Improved EP resolution, Trigger**
- <u>eTOF</u>: PID in the forward region

Sooraj Radhakrishnan (for STAR Collaboration)

inner TPC upgrade Event Plane Detector endcap TOF

- Order of magnitude more events in BES-II
- Collision energies: 27 7.7 GeV, μ_B: 206 — 420 MeV
- Finished taking data for energies down to 9.2 GeV. Run-21 ongoing

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Numb
(GeV/nucleon)	(GeV)	(MeV)		Requested
13.5	27	156	24 days	(5
9.8	19.6	206	$36 \mathrm{days}$	400 M
7.3	14.6	262	$60 \mathrm{~days}$	300 M
5.75	11.5	316	$54 \mathrm{days}$	230 M
4.59	9.2	373	102 days	160 M
3.85	7.7	420	11-20 weeks	10

BES-II data taking progress

• Further extend to lower energies with FXT runs

Sooraj Radhakrishnan (for STAR Collaboration)

STAR BES-II Status

Statistics comparison to BES-I

Mon Apr 12 13:03:00 2021

8

FXT Program at STAR BES-II

STAR in FXT mode

• Short run in 2015 at FXT 4.5 GeV demonstrating STAR FXT data taking capabilities (Phys. Rev. C. 103, 034908)

Sooraj Radhakrishnan (for STAR Collaboration)

• Extends BES-II down to collision energy of 3 GeV and μ_B up to 720 MeV

Deems Energy			Durn Times	Number Fronts	1
Beam Energy	$\sqrt{s_{\rm NN}}$	$\mid \mu_{\rm B}$	Kun 11me	Number Events	1
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Co
31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	100 M (50 M+112 M) $ $	Run
19.5	6.2 (FXT)	487	$1.4 \mathrm{~days}$	100 M (118 M)	\mathbf{R}
13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)	\mathbf{R}
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	\mathbf{R}
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	100 M (117 M)	\mathbf{R}
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	\mathbf{R}
4.59	3.2 (FXT)	699	$2.0 \mathrm{~days}$	100 M (200 M)	\mathbf{R}
3.85	3.0 (FXT)	721	$4.6 \mathrm{~days}$	100 M (259 M)	R

FXT Program at STAR BES-II

STAR in FXT mode

- Short run in 2015 at FXT 4.5 GeV demonstrating STAR FXT data taking capabilities (Phys. Rev. C. 103, 034908)
- First of the BES-II FXT runs in 2018 @3 GeV
- Large data set and mid-rapidity acceptance

Sooraj Radhakrishnan (for STAR Collaboration)

Extends BES-II down to collision energy of 3 GeV and μ_B up to 720 MeV

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events]		
$({ m GeV/nucleon})$	(GeV)	(MeV)		Requested (Recorded)	Co		
31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	$100 \text{ M} (50 \text{ M}{+}112 \text{ M})$	Rur		
19.5	6.2 (FXT)	487	$1.4 \mathrm{~days}$	100 M (118 M)	\mathbf{R}		
13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)	\mathbf{R}		
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	\mathbf{R}		
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	$100 {\rm M} (117 {\rm M})$	\mathbf{R}		
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	\mathbf{R}		
4.59	3.2 (FXT)	699	$2.0 \mathrm{~days}$	100 M (200 M)	R		
3.85	3.0 (FXT)	721	$4.6 \mathrm{~days}$	100 M (259 M)	\mathbf{R}		

Sooraj Radhakrishnan (for STAR Collaboration)

Outline of the talk

- Introduction
- STAR BES-II and FXT Programs
- New results on collectivity
- Strangeness production in high µB collisions
- Critical fluctuations
- Summary and Outlook

Identified hadron v₁ and v₂ at FXT 3 GeV

- Positive v₁ slope and negative v₂ for all particles in central collisions
- UrQMD cascade mode cannot describe data
- Need baryonic mean field interactions to generate trends seen in data

Models: Prog. Part. Nucl. Phys. 41, 225-370 J. Phys. G: Nucl. Part. Phys. 25, 1859-1896 Eur. Phys. J. A1 15, 1-16

Disappearance of quark number scaling

Measurements from new data at 27 and 54.4 GeV

Sooraj Radhakrishnan (for STAR Collaboration)

- NCQ scaling holds for energies from 200 down to 4.5 GeV collisions
 - Partonic collectivity
- v₂ values are negative and NCQ scaling breaks down at 3 GeV

 indicative of medium without partonic degrees of freedom

STAR: Phys. Rev. C88149020 STAR: Phys. Rev. C.103, 034908 X. Dong et al. Phys. Lett. B 597 328-332

Energy dependence of v₁ and v₂

- Positive v_1 slope and negative v_2 for all measured particles in 3 GeV collisions
- Positive v_1 slope observed for kaons and Φ mesons for the first time
- Results from UrQMD with baryonic mean-field interactions qualitatively describe the data

Sooraj Radhakrishnan (for STAR Collaboration)

• Negative v_1 slope and large positive v_2 at high energy collisions

EoS dominated by baryonic interactions at 3 GeV

E877: Phys. Rev. C 56, 3254-3264 E895: Phys. Rev. Lett.85, 940 FOPI: Phys. Lett. B612, 173

Sooraj Radhakrishnan (for STAR Collaboration)

Outline of the talk

- Introduction
- STAR BES-II and FXT Programs
- New results on collectivity
- Strangeness production in high µB collisions
- Critical fluctuations
- Summary and Outlook

Strangeness production: K⁻/K⁺, K⁺/π⁺ ratios

Beam energy dependence of strangeness production

Strangeness production: Φ/K ratio

Beam energy dependence of strangeness production

STAR data at 3 GeV strongly disfavors GCE, results $\sim 5\sigma$ away from zero (for 0-10%)

Sooraj Radhakrishnan (for STAR Collaboration)

- Low energies, small systems: local strangeness conservation
- Canonical instead of Grand Canonical Ensemble
 - describe statistical production -> reduced phase space -> "Canonical suppression"
 - Data favors a CE calculation with a correlation length $r_c = 3.2$ fm

World data: Phys. Lett. B 778, 403-407, Phys. Rev. C. 80.025209; Phys. Rev. C. 69.054901; Phys. Rev. C 78, 044907; Phys. Rev. C 77, 024903, Phys. Rev. C 66, 054902

Models: Nucl. Phys. A 772, 167; Phys. Lett. B 603, 146 J. Phys. G: Nucl. Part. Phys. 43 (2016) 015104 *Phys. Rev, C 99, 064908*

Hypernuclei production at FXT 3 GeV

contribution to EoS

- **⁴**H yield much higher than from coalescence model calculations

Sooraj Radhakrishnan (for STAR Collaboration)

• Lifetime, yield, flow of hypernuclei important to understand Y-N interactions and hyperon

Models: Phys. Lett. B. 714,85; Phys. Lett. B 697, 203 ALICE: Phys. Lett. B 754, 360

 $^{3}_{\Lambda}$ H : $\tau = 232.1 \pm 29.2$ (stat) ± 36.7 (syst)[ps]

 $^{4}_{\Lambda}$ H : $\tau = 218.3 \pm 7.5$ (stat) ± 11.8 (syst)[ps]

• ${}^{3}_{\Lambda}$ H lifetime close to that of Λ $(263 \pm 2 \text{ ps})$, low binding energy

Thermal (with canonical ensemble) and coalescence model calculations describe $^{3}_{\Lambda}H$ yields

contribution to EoS

Sooraj Radhakrishnan (for STAR Collaboration)

Hypernuclei flow at FXT 3 GeV

• Lifetime, yield, flow of hypernuclei important to understand Y-N interactions and hyperon

- Directed flow of hypernuclei follow baryon number scaling
- Consistent with coalescence production of hypernuclei

Sooraj Radhakrishnan (for STAR Collaboration)

Outline of the talk

- Introduction
- STAR BES-II and FXT Programs
- New results on collectivity
- Strangeness production in high µB collisions
- Critical fluctuations
- Summary and Outlook

Net-proton cumulant measurements

- Non-monotonic variation of net-proton kurtosis x variance vs collision energy (at 3.1σ significance)
- Qualitatively consistent with models involving a critical point
- BES-II and FXT measurements for cumulant ratios ongoing
 - Higher statistics
 - FXT measurements will help explore the nature of fluctuations at lower energies

Higher order cumulants of net-proton @ 200 GeV

- Measurements in 200 Gev Au+Au an p+p collisions
- C_6/C_2 values decrease with multiplicity in Au+Au collisions
- Negative C₆/C₂ in central Au+Au collisions, consistent with LQCD calculations with a cross-over transition to the QGP phase
- p+p results consistent with peripheral Au+Au, and weak multiplicity dependence

- Collectivity measurements in FXT 3 GeV collisions
 - Change from a medium dominated by partonic interactions to one dominated by nuclear EoS
- Strangeness production vs beam energy
 - Strongly disfavors statistical models with Grand Canonical Ensemble Strange hadron and hypernuclei production consistent with models with Canonical Ensemble
 - •
- Critical fluctuations
 - Higher order cumulant ratios consistent with a cross-over transition in 200 GeV collisions

Look forward to more exciting results from STAR

Sooraj Radhakrishnan (for STAR Collaboration)

Summary and Outlook

BES-II and FXT measurements on critical fluctuations, femtoscopy, flow,.... ongoing.

Back Up

Identified hadron v_1 and v_2 at FXT 3 GeV: p_T dependence

Identified hadron v₁ and v₂ at FXT 3 GeV: Rapidity dependence

Light nuclei v_1 and v_2 at FXT 3 GeV

- Lines from JAM model calculation with coalescence production for light nuclei
- Describes data qualitatively —> coalescence production of light nuclei

Sooraj Radhakrishnan (for STAR Collaboration)

JAM: Phys. Rev. C. 97. 064913

balescence production for light nuclei ence production of light nuclei

Hypernuclei production at FXT 3 GeV

- Lifetime, yield, flow of Hypernuclei important to understand Y-N interactions and hyperon contribution to EoS
- High μ_B at low energies —> large yields for hypernuclei

Sooraj Radhakrishnan (for STAR Collaboration)

- Increased precision for lifetime measurements for ³_AH and ⁴_AH
- ³_ΛH lifetime close to that of Λ as expected due to the low binding energy

 $^{3}_{\Lambda}$ H : $\tau = 232.1 \pm 29.2$ (stat) ± 36.7 (syst)[ps]

 $^{4}_{\Lambda}$ H : $\tau = 218.3 \pm 7.5$ (stat) ± 11.8 (syst)[ps]

