Measurements of long-range correlations in photon-hadron collisions at the LHC

Blair Daniel Seidlitz University of Colorado Boulder

APS GHP, 2021, April. 16th

Which small systems do we know flow?

Near-side ridge

Which small systems do we know flow?

Which small systems do we know flow?

Ultra-peripheral collisions at the LHC

Coulomb fields of moving charges can be treated as an equivalent flux of photons which are boosted to high energies.

Photons reach energies of 10s of GeV with a 2.5 TeV Pb beam at the LHC

When $b > 2R_A$ two categories of interactions

- Pure EM processes
 - $\gamma \gamma \rightarrow \gamma \gamma \underline{arXiv:1904.03536}$ & $\underline{arXiv:2008.05355}$
 - γγ → μμ <u>arXiv:2011.12211</u>
- Photo-hadron interactions
 - $\gamma + A \rightarrow A^* + V$

•
$$\gamma + A \rightarrow X$$

Direct γA collisions Photon couples directly to nuclear parton

+y J Rapidity -y

Direct γA collisions Photon couples directly to nuclear parton

+y | Rapidity | -y

Select events based on primarily

- Single-sided nuclear breakup "OnXn" (zero-degree calorimeter ZDC)
- Rapidity gaps

Minimum bias selection includes both but is dominated by resolved events.

Presenting two measurements

Pb

2018 5.02 TeV Pb+Pb Submitted to PRC arXiv:2101.10771

D

Pb

"High"-multiplicity photonuclear collisions

"High"-multiplicity photonuclear collisions

Rapidity gap selection

Por v

Reconstructed rapidity gaps are used for event selection of γ +A and γ +p (gap definitions are different).

Gap between detector edge and η bin with significant energy deposition. CMS has made a preliminary measurement of gap distributions.

<u>CMS-PAS-HIN-18-019</u>

Both MC comparisons indicate high purity $\gamma + A/p$ samples

P

Charged-particle multiplicity

Rough *N*_{ch} **comparison** γ+A/*p*

- Future minimum-bias measurements would add fundamental understanding.
- Such measurements would also add to interesting hadron physics in color fluctuations and more.

arXiv:2101.10771

Two-particle correlation of charged tracks

11

Raw moments of 2PC (no non-flow removal)

- $v_{2,2}$ grows with N_{ch} evidence of a dominant and N_{ch} -dependent-hardening jet shape
- Similar conclusion for $v_{3,3}$
- Although very different multiplicities, γ+p has a much stronger correlation than γ+A.
 No trivial way of removing non-flow and require further study!

Non-flow removal in vA correlations

----- Low multiplicity (LM) template for jet/ non-flow correlation

$$Y^{\text{HM}}(\Delta\phi) = FY^{\text{LM}}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{3} v_{n,n} \cos(n\Delta\phi)\right\}$$

HM – (scaled LM)
removes nonflow

Clear cos(2Δφ) modulation -

Same technique used in *pp* and *p*+Pb flow measurements

v_n in photonuclear collisions

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat $v_2(N_{ch})$ within statistical precision

v_n in photonuclear collisions

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat *v*₂(*N*_{ch}) within statistical precision

Changing *pp* to $0.4 < p_T < 2.0$ is predicted to lower *pp* v_2 by ~10% which does not lead to agreement between *pp* and γA

Consistent v_3 between γA and pp given large uncertainties on both

$v_2(p_T)$ comparison with pp and p+Pb

Similar trend in $v_2(p_T)$ as other hadronic systems.

Similar low- p_T behavior as pp and p+Pb but systematically lower.

High- $p_T v_2$ is falling to large negative values (see backup) which is from the oversubtraction of nonflow. This effect is present in *pp* but is larger and sets in at lower p_T in γA (ATLAS-CONF-2020-018)

$v_2(p_T)$ comparison with CGC calc.

Compared to Color Glass Condensate (CGC) framework <u>calculation of $\gamma A v_2(p_T)$ </u> with $Q_s^2 = 5 \text{ GeV}^2$ and $B_P^2 = 25 \text{ GeV}^2$

Model is consistent with data at low- p_{T}

Theory uncertainty from hadron fragmentation

arXiv:2008.03569

CGC model comparison

Color Glass Condensate model calculation containing **initial-state correlations** which gives rise to nonzero v_2

Correlated color domain size is ~ 1/Q_s arXiv:2008.03569

- Larger number of domains struck →lower v₂
- Quasi-real photon is predicted to have large B_P

<u>arXiv:2101.10771</u>

CGC model comparison

~ 0.3 > Template Fit Color Glass Condensate model ATLAS Preliminary Pb+Pb, 1.0 μb⁻¹ - 1.7 nb⁻¹ $2.0 < |\Delta \eta| < 5.0$ calculation containing initial-state 0.25 $\approx p + Pb, N_{ch}^{rec} \ge 60$ $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, 0nXn $\Sigma_{\gamma} \Delta \eta$ > 2.5, 20 < $N_{
m ch}^{
m rec} \leq$ 60 correlations which gives rise to • Photonuclear 02 nonzero V_2 \blacksquare CGC, $Q_s^2 = 5 \text{ GeV}^2$, $B_p^2 = 25 \text{ GeV}^{-2}$ --- CGC, $Q_{p}^{2} = 5 \text{ GeV}^{2}$, $B_{p}^{2} = 6 \text{ GeV}^{-2}$ 0.15 A (nuclear target) 0.1 0.05 B_{P} (projectile size) 2 3 Δ *p*_{_} [GeV] Similar calculations describing *p*+Pb (arXiv:1808.09851) • Difference in v_2 is a result of a **Correlated color domain** smaller B_{ρ}^{2} for a proton where

 $B_n^{\gamma} \sim$

size is ~ 1/**Q**,

arXiv:2101.10771

18

Conclusions

Results

Photonuclear v_n has a similar order of magnitude and trends as other previously measured hadronic systems Intuitive property of hadronic-like photonuclear collisions (photon

 \rightarrow vector meson).

Preliminary results of $\gamma + p$ show raw correlations with no nearside ridge and correlations consistent with nonflow.

Theory

Compared to CGC model and are interested in models which include **final-state effects**.

Prediction for collectivity in $\gamma + p$ given $\gamma + A$?

Future study

Difference with *pp* might be a consequence of (and further studied by) CM energy, CM-frame rapidity acceptance, decorrelations effects, and multi-particle correlations

Thank you

Gap definition (detector roll-out)

Event Selection: $\Sigma \Sigma_{\gamma} \Delta \eta_{gap} > 2.5$

Comparison to DPMJET-III

- DPMJET-III predicts the photon energy changes by about 1-2 standard deviations over the multiplicity range of the measurement and a doubling of the mean $W_{\gamma N}$ for 10 to 60 N_{ch}^{rec} .
- Large difference between measured $v_{n,n}$ before and after template nonflow subtraction for data and DPMJET-III.
- Small negative $v_{2,2}$ after template fit

DPMJET-III 2PC example

More jet-like away side in DPMJET-III than in data. This produces the larger unsubtracted $v_{2,2}$ seen on the previous slide. Small remaining modulation after nonflow subtraction seen in the lower panel. DPMJET-III is of limited use in modeling the soft correlations in photonuclear events.

$dN_{ch}/d\eta$ in γA collisions

- dN_{ch}/dη of events passing the photonuclear event selection.
- Very similar shape $dN_{ch}/d\eta$ for events with $N_{ch}^{rec} \ge 10$.

ATLAS-CONF-2019-022

ATLAS template fitting method

CERN-EP-2020-246

Factorization v₂(N_{ch})

 $v_2(N_{ch})$ shows insensitivity to associated particle p_T range. This is consistent with a hydrodynamic paradigm where particle anisotropies are generated from a single-particle flow vector for all p_T .

Triggering on photonuclear events

- Due to trigger strategy, the high-statistics portion of the $\rm N_{ch}$ range is for $\rm N_{ch}$ > 15

Triggering included

- Level-1 requirements on
 - Minimum event activity to collect high-multiplicity γA events
 - Maximum event activity to reject Pb+Pb collisions
 - Single-sided nuclear breakup (zero-degree calorimeter).
- High-level trigger requirements on
 - Minimum number of tracks to collect high-multiplicity events
 - Maximum energy in photon-going FCAL ($3.2 < \eta < 4.9$)

Photonuclear rapidity gaps $\Sigma_v \Delta \eta$ and N_{ch}

Photonuclear rapidity gaps $\Sigma_v \Delta \eta$ and N_{ch}

Photonuclear events have large rapidity gaps in the photon-going direction and a steeply falling multiplicity distribution.