Exploring Hadrons through the Microscope of Lattice QCD

David Richards
Jefferson Lab

A history of lattice QCD through no-go theorems

- You can't place a chirat gaugze titury on a arocrotized lattice

Domain-wall Fermions: D.Kaplan, Phys.Lett.B 288 (1992) 342 Overlap Fermions: R.Narayanan, H.Neuberger, Nucl.Phys.B 443 (1995) 305

- You can't investigate seattening on a Lưlidean lattice
"Luscher's Method": M.Luscher, Nucl.Phys.B 354 (1991) 531
See David Wilson, Tuesday and many parallel talks
- You can't compute manix eiments-of lint-cone operators on a Euclidean lattice LaMET: X.Ji, Phys.Rev.Lett. 110 (2013) 262002

Theorems did not fall - we found way to drive around them

Transformed our ability to exploit internal structure of hadrons

HadStruc Collaboration

Robert Edwards, Balint Joo, Jianwei Qia, David Richards, Eloy
Romero, Frank Winter, Nikhil Karthik
defferson Lab
Carl Carlson, Colin Egerer, Christos Kallidonis,
Tanjib Khan, Christophen Monahen, Kostas Orginos, Raza Sufian
College of William and Mary
Wayne Morris Anatoly Radyushkin
OldDominion University
Joe Karpie
Columbia University
Savvas Zafeiropoulos
Aix Marseille Univ, Marseille, France
Yan-Qing Ma
Peking University, Beijing, China

Lattice QCD on a slide

Capability Computing Gauge Generation

e.g. Summit at ORNL
$P[U] \propto \operatorname{det} M[U] e^{-S_{G}[U]}$
Euclidean space \longrightarrow Importance Sampling

Capacity Computing Observable Calculation

e.g. GPU/KNL clusters at JLab, BNL, FNAL

$$
\langle\mathcal{O}\rangle=\frac{1}{N} \sum_{n=1}^{N} \mathcal{O}\left(U^{n}, G\left[U^{n}\right]\right)
$$

$$
\text { e.g. } C(t)=\sum_{\vec{x}}\langle N(\vec{x}, t) \bar{N}(0)\rangle
$$

"Desktop" Computing Physical Parameters

e.g. Mac at your desk

$$
C(t)=\sum_{n} A_{n} e^{-E_{n} t}
$$

$M_{N}\left(a, m_{\pi}, V\right)$

Several V, a, T, $m_{\text {r }}$

Paradigm: Pion EM form factor

$$
\left\langle\pi\left(\vec{p}_{f}\right)\right| V_{\mu}(0)\left|\pi\left(\vec{p}_{i}\right)\right\rangle=\left(p_{i}+p_{f}\right)_{\mu} F\left(Q^{2}\right)
$$

where $\quad V_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d$

$$
-Q^{2}=\left[E_{\pi}\left(\vec{p}_{f}\right)-E_{\pi}\left(\vec{p}_{i}\right)\right]^{2}-\left(\vec{p}_{f}-\vec{p}_{i}\right)^{2}
$$

$\Gamma_{\pi+\mu \pi+}\left(t_{f}, t ; \vec{p}, \vec{q}\right)=\sum_{\vec{x}, \vec{y}}\langle 0| \phi\left(\vec{x}, t_{f}\right) V_{\mu}(\vec{y}, t) \phi^{\dagger}(0)| \rangle e^{-i \vec{p} \cdot \vec{x}} e^{-i \vec{q} \cdot \vec{y}}$

G. Huber, D.Gaskell, T. Horn PR12-16-003

F.Bonnet et al., PRD 72 (2005) 054506

Charge Radius Partonic DOF

No-go Theorem?

- First Challenge:
- Euclidean lattice precludes calculation of light-cone/time-separated correlation functions

$$
q(x, \mu)=\int \frac{d \xi^{-}}{4 \pi} e^{-i x \xi^{-} P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} e^{-i g \int_{0}^{\xi^{-}} d \eta^{-} A^{+}\left(\eta^{-}\right)} \psi(0)|P\rangle
$$

So.... ...Use Operator-Product-Expansion to formulate in terms of Mellin Moments with respect to Bjorken x.
$\longrightarrow\langle P| \bar{\psi} \gamma_{\mu_{1}}\left(\gamma_{5}\right) D_{\mu_{2}} \ldots D_{\mu_{n}} \psi|P\rangle \rightarrow P_{\mu_{1}} \ldots P_{\mu_{n}} a^{(n)}$

- Second Challenge:
- Discretised lattice: power-divergent mixing for higher moments Moment Methods
- Extended operators: Z.Davoudi and M. Savage, PRD 86,054505 (2012)
- Valence heavy quark: W.Detmold and W.Lin, PRD73, 014501 (2006)

Solution....

Large-Momentum Effective Theory (LaMET)

"Equal time" correlator

$$
\begin{aligned}
& \left.q\left(x, \mu^{2}, P^{z}\right)=\int \frac{d z}{4 \pi} e^{i z k^{z}}\langle P| \bar{\psi}(z) \gamma^{z} e^{-i g \int_{0}^{z} d z^{\prime} A^{z}\left(z^{\prime}\right)} \psi(0) \right\rvert\, P> \\
& \left.+\mathcal{O}\left(\left(\Lambda^{2} /\left(P^{z}\right)^{2}\right), M^{2} /\left(P^{z}\right)^{2}\right)\right) \\
& q\left(x, \mu^{2}, P^{z}\right)=\int_{x}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}\right) q\left(y, \mu^{2}\right)+\mathcal{O}\left(\Lambda^{2} /\left(P^{z}\right)^{2}, M^{2} /\left(P^{z}\right)^{2}\right)
\end{aligned}
$$

Pseudo-PDFs

- Pseudo-PDF (pPDF) recognizing generalization of PDFs in terms of loffe Time. $\quad \nu=p \cdot z$
A.Radyushkin, Phys. Rev. D 96, 034025 (2017)
B.loffe, PL39B, 123 (1969); V.Braun et al, PRD51, 6036 (1995)

$$
\begin{gathered}
M^{\alpha}(p, z)=\langle p| \bar{\psi} \gamma^{\alpha} U(z ; 0) \psi(0)|p\rangle \\
p=\left(p^{+}, m^{2} / 2 p^{+}, 0_{T}\right) \quad \left\lvert\, \begin{array}{l}
\boldsymbol{\Delta} \\
M_{2}=\left(0, z_{-}, 0_{T}\right)
\end{array}\right. \\
M^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right)
\end{gathered}
$$

loffe-time pseudo-Distribution (pseudo-ITD) generalization to space-like z
Lattice "building blocks" that of quasi-PDF approach.

$$
\begin{gathered}
\stackrel{\downarrow \text { Lorentz covariant }}{\mathcal{M}\left(\nu, z^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} \mathcal{P}\left(x, z^{2}\right) \longleftarrow \text { pseudo-PDF }} \begin{array}{c}
\qquad(x)=\mathcal{P}(x, 0) \underset{z_{3}^{2} \rightarrow 0}{=} \frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \nu x} \mathcal{M}\left(\nu,-z_{3}^{2}\right)
\end{array} .
\end{gathered}
$$

"Good Lattice Cross Sections"

$\sigma_{n}\left(\nu, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle$
Ma and Qiu, Phys. Rev. Lett. 120022003
Expressed in coordinate space
where

$$
\begin{aligned}
& \text { where } \\
& \sigma_{n}\left(\nu, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) K_{n}^{a}\left(x \nu, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
\end{aligned}
$$

Calculated in LQCD

Calculated in perturbation theory ("process dependent") function

Analogous matching to light-cone PDFs

Pion Valence PDF

Revealing the structure of light pseudoscalar mesons at the Electron-Ion Collider

J Arrington ${ }^{1}$, C Ayerbe Gayoso ${ }^{2}$, PC Barry ${ }^{6,21}$, V Berdnikov ${ }^{3}$, D Binosi ${ }^{4}$, L Chang ${ }^{5}$, M Diefenthaler ${ }^{6}$, M Ding ${ }^{4}$, R Ent ${ }^{6}$,
T Frederico ${ }^{7}$, Y Furletova ${ }^{6}$, TJ Hobbs ${ }^{6,8,20}$, T Horn ${ }^{3,6,{ }^{6} \text {, }}$ GM Huber ${ }^{9}$, SJD Kay ${ }^{9}$, C Keppel ${ }^{6}$, H-W Lin ${ }^{10}$, C Mezrag ${ }^{11}$, R Montgomery ${ }^{12}$, IL $^{\text {Pegg }}{ }^{3}$, K Raya ${ }^{5,13}$, P Reimer ${ }^{14}$, DG Richards ${ }^{6}$, CD Roberts ${ }^{15,16}$,
J Rodríguez-Quintero ${ }^{17} \mathrm{D}$ Romanov ${ }^{6}$, G Salmè ${ }^{18}$, N Sato ${ }^{6}$,
J Segovia ${ }^{19}$, P Stepanov ${ }^{3}$, AS Tadepalli ${ }^{6}$ and RL Trotta ${ }^{3}$
${ }^{1}$ Lawrence Berkeley National Laboratory, Berkeley, CA 94720 , USA
${ }_{2}$ Missisisipipi State University, Starkville, MS, USA
${ }^{3}$ Mississippi State University, Starkvile, MS, USA
${ }^{4}$ European Centre for Thereretical Studies in Nuclear Physics and Related Areas
${ }^{\text {(ECTH }}$) and Fondazione Bruno Kessler Villa Tambosi, Strada delle Taberle (ECT*) and Fondazione Bruno Kessler Villa Tambosi, Strada delle Tabarelle 286 ,
I-38123 villazzano (TN) Italy ${ }_{5}^{\text {I }} 388123$ Villazzano (TN) Italy
School of hysits, Nankai University, Tianjin 300071, China
Thomas Jeffer
USA
7 Instituto Tecnologgioco de Aeronautica, $12.228-900$ São José dos Campos, Brazil
${ }^{8}$ Southern Methodist University, Dallas, TX 75275 -0175, USA 9
${ }^{9}$ University of Regina, Regina, SK S4S OA2, Canada
10 竍
${ }^{10} 0$ Michigan State University, East Lansing, MI 48824, USA
${ }_{11}^{1}$ IRET CEA Univerite P
${ }^{11}{ }^{12}$ IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
G12 8QQ, United Kingdom
${ }_{13}{ }^{21}$ Instituto de Ciencias Nu
Apartado Postal 70-543, C.P. 04510, CDMX, Mexico
${ }_{14}^{4}$ Argoone National Laboratory Lemont
${ }^{14}$ Argonne National Laboratory, Lemont, IL 60439 , USA
${ }^{15}$ School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
${ }^{16}$ Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu
${ }_{17}^{210093 \text {, China }}$ Department of Integrated Sciences and Center for Advanced Studies in Physis ${ }^{17}$ Department of Integrated Sciences and Center for Advanced Studies in Physic
Mathematics and Computation, University of Huelva, E-21071 Huelva, Spain

JPhys G

Major experimental initiatives
C.Roberts, D.Richards, T.Horn, L.Chang, arXiv:2102.01765, PPNP
X.Gao, C.Lauer
N.Karthik, Y.Zhao

- Understanding pion goes to heart of origin of mass
- LQCD can study isolated, unbound pion
- Potential to validate experimental analyses
- Computationally the most straightforward
- But... ..signal-to-noise ratio degrades at high momentum

Good Lattice Cross Section

Sufian et al., Phys. Rev. D 99, 074507 (2019); Phys. Rev. D102, 05408 (2020)

Sequential-Source Approach

Process, i.e. current, dependent $\quad \frac{1}{2}\left[\sigma_{V, A}^{\mu \nu}(\xi, p)+\sigma_{A, V}^{\mu \nu}(\xi, p)\right]$

$$
=\epsilon^{\mu \nu \alpha \beta} \xi_{\alpha} p_{\beta} T_{1}\left(\nu, \xi^{2}\right)+\left(p^{\mu} \xi^{\nu}-\xi^{\mu} p^{\nu}\right) T_{2}\left(\nu, \xi^{2}\right)
$$

Perturbative kernel:
N.B. We're inconsistent $\omega \leftrightarrow \nu$!
$\widetilde{\sigma}_{V A}^{q(1)}\left(\widetilde{\omega}, q^{2}\right)=\int_{0}^{1} \frac{d x}{x} \widetilde{K}^{(1)}\left(x \widetilde{\omega}, q^{2}, \mu^{2}\right) f_{q_{\mathrm{v}} / q}^{(0)}\left(x, \mu^{2}\right)+\int_{0}^{1} \frac{d x}{x} \widetilde{K}^{(0)}\left(x \widetilde{\omega}, q^{2}, \mu^{2}\right) f_{q_{\mathrm{v}} / q}^{(1)}\left(x, \mu^{2}\right)$.
Y-Q Ma

Lattice Cross Sections

"Z-expansion fit"

$$
\begin{gathered}
\sigma_{V A}\left(\omega, \xi^{2}\right)=\sum_{k=0}^{k_{\max }=4} \lambda_{k} \tau^{k}+b_{1} m_{\pi}+b_{2} a+b_{3} \xi^{2}+b_{4} a^{2} p^{2}+b_{5} e^{-m_{\pi}(L-\xi)} \\
\tau=\frac{\sqrt{\omega_{\mathrm{cut}}+\omega}-\sqrt{\omega_{\mathrm{cut}}}}{\sqrt{\omega_{\mathrm{cut}}+\omega}+\sqrt{\omega_{\mathrm{cut}}}}
\end{gathered}
$$

Inverse problem: extract PDF

"Inverse Problem" - ill-posed inverse Fourier transform.

$$
\sigma_{n}\left(\nu, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) K_{n}^{a}\left(x \nu, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

Calculate on Lattice Extract PDF? Calculate in PQCD

Similar challenge to global fitting community!

NLO term well-controlled

Pion Valence Quark Distribution at Large x from Lattice QCD
Raza Sabbir Sufian, ${ }^{1}$ Colin Egerer, ${ }^{2}$ Joseph Karpie, ${ }^{3}$ Robert G. Edwards, ${ }^{1}$ Bálint Joó, ${ }^{1}$ Yan-Qing Ma, ${ }^{4,5,6}$ Kostas Orginos, ${ }^{1,2}$ Jian-Wei Qiu, ${ }^{1}$ and David G. Richards ${ }^{1}$

Sufian et al., Phys. Rev. D102, 05408 (2020)

Determine large-x behavior \rightarrow need for finer resolution and reach in loffe time.

Pseudo-PDF Approach

ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	β	$a m_{l}$	$a m_{s}$	$L^{3} \times N_{t}$	N_{cfg}
$a 127 m 415$	$0.127(2)$	$415(23)$	6.1	-0.280	-0.245	$24^{3} \times 64$	2147
$a 127 m 415 L$	$0.127(2)$	$415(23)$	6.1	-0.280	-0.245	$32^{3} \times 96$	2560

Same ensemble as LCS

B.Joó et al., Phys. Rev. D 100, 114512 (2019).

Pion pPDF

 100, 034516

J-H Zhang et al., Phys. Rev. D 100, 034505
Y.Zhao, Tues

$$
\boxminus \mathrm{OPE}
$$

$$
=\text { OPE }
$$

ㄷ x-space

- JAM xFitter - FNAL

NUCLEON STRUCTURE

Pseudo-PDFs

To deal with UV divergences, introduce reduced distribution

$$
\mathfrak{M}=\frac{\mathscr{M}\left(\nu, z^{2}\right)}{\mathscr{M}\left(0, z^{2}\right)} \equiv\left(\frac{\mathscr{M}\left(\nu, z^{2}\right)}{\mathscr{M}(\nu, 0)}\right),\left(\frac{\mathscr{M}\left(0, z^{2}\right)}{\mathscr{M}(0,0)}\right)
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d u K\left(u, z^{2} \mu^{2}, \alpha_{s}\right) Q\left(u \nu, \mu^{2}\right)
$$

Computed on lattice
Perturbatively calculable
loffe-time Distribution

$$
Q(\nu, \mu)=\mathfrak{M}\left(\nu, z^{2}\right)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(z^{2} \mu^{2} \frac{e^{2 \gamma_{E}+1}}{4}\right) B(u)+L(u)\right] \mathfrak{M}\left(u \nu, z^{2}\right) .
$$

K. Orginos et al., PRD96 (2017), 094503

Inverse problem

Match data at different z

$$
\begin{aligned}
Q(\nu) & =\int_{-1}^{1} d x q(x) e^{i \nu x} \\
q(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \nu x} Q(\nu)
\end{aligned}
$$

Need data for all v, or additional physics input

Moments of PDFs

Can extract moments - which does not require tackling the inverse problem

Different systematics from computation through local operators

Ioffe-Time Distribution to PDF

To extract PDF requires additional information - use a phenomenologically motivated parametrization

$$
\begin{aligned}
& f(x)=x^{a}(1-x)^{b} P(x) \\
& P(x)=\frac{1+c \sqrt{x}+d x}{B(a+a, b+1)+c B(a+1.5, b+1)+d B(a+2, b+1)}
\end{aligned}
$$

PDFs at Physical Quark Masses

B.Joo et al., arXiv:2004.01687, PRL (in press)

Physical pion

$$
q_{v}\left(x, \mu^{2}, m_{\pi}\right)=q_{v}\left(x, \mu^{2}, m_{0}\right)+a \Delta m_{\pi}+b \Delta m_{\pi}^{2}
$$

PDFs at Physical Mass

Opportunities and Challenges

A New Opportunity in Hadron Structure

JLab@12GeV

CENTER for
NUCLEAR FEMTOGRAPHY

Xiangdong Ji

Lattice QCD

Future Electron-Ion Collider

3D Image of nucleon and nuclei at the femtoscale

Hadron Femtography

- Three-dimensional imaging of hadrons M.Constantinou, Tues Generalized Parton Distributions Transverse Momentum Dependent dist
 C.Alexandrou et al., PRL125, 262001 (2020)
M.Constantinou, Tues
A.Radyushkin, PRD100, 116011 (2019)
pseudo-GITD
$\mathscr{M}\left(\nu, \xi, t ; z^{2}\right)=e^{i \xi \nu} \int_{-1}^{1} d x e^{i x \nu} \mathscr{H}\left(x, \xi, t, z^{2}\right)$
$\nu=\left(\nu_{1}+\nu_{2}\right) / 2 \quad \xi=\frac{\nu_{1}-\nu_{2}}{\nu_{1}+\nu_{2}} \quad$ A.Rajan

C.Egerer, Tues

Lattice is complementary to experiment and essential!

Next Frontier: Flavor Singlet

Glue that

binds as all...
Z.Fan et al., arXiv:2008.15113
D.Pefkou

The 2015
LONG RANGE PLAN for NUCLEAR SCIENCE

Gluons in pseudo-PDF approach Wayne Morris, Tues

Calculations far more demanding: signal-to-noise ratio + flavor-singlet quark.
C.Egerer et al., Phys. Rev. D 103, 034502 (2021)

Outlook

- The breadth of physics that lattice QCD can address has grown to encompass most of the key physics of GHP
- Increasing trend: lattice QCD working with phenomenological analysis: JAM, NNPDF,...
- We are entering an exciting time:

+ quantum computing, machine learning!

GHP is an essential forum and voice!

