Exploring Hadrons through the Microscope of Lattice QCD

David Richards Jefferson Lab

A history of lattice QCD through no-go theorems

You can't place a chiral gauge theory on a discretized lattice

Domain-wall Fermions: *D.Kaplan, Phys.Lett.B* 288 (1992) 342 Overlap Fermions: *R.Narayanan, H.Neuberger, Nucl.Phys.B* 443 (1995) 305

You can't investigate scattering on a Euclidean lattice

"Luscher's Method": *M.Luscher, Nucl.Phys.B* 354 (1991) 531 See *David Wilson, Tuesday* and *many parallel talks*

 You can't compute matrix elements of light-cone operators on a Euclidean lattice LaMET: X.Ji, *Phys.Rev.Lett.* 110 (2013) 262002

Theorems did not fall - we found way to drive around them

Transformed our ability to exploit internal structure of hadrons

HadStruc Collaboration

Robert Edwards, Balint Joo, Jianwei Qia, David Richards, *Eloy Romero*, Frank Winter, *Nikhil Karthik* Jefferson Lab Carl Carlson, Colin Egerer, *Christos Kallidonis*, Tanjib Khan, Christopher Monahan, Kostas Orginos, Raza Sufian College of William and Mary Wayne Morris Anatoly Radyushkin Old Dominion University Joe Karpie Columbia University Savvas Zafeiropoulos Aix Marseille Univ, Marseille, France Yan-Qing Ma Peking University, Beijing, China

Lattice QCD on a slide

Capability Computing -Gauge Generation

e.g. Summit at ORNL $P[U] \propto \det M[U] e^{-S_G[U]}$

Euclidean space → *Importance Sampling*

Several V, a, T, m_{π}

Capacity Computing -Observable Calculation

e.g. GPU/KNL clusters at JLab, BNL, FNAL

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}(U^n, G[U^n])$$

e.g. $C(t) = \sum_{\vec{x}} \langle N(\vec{x}, t) \bar{N}(0) \rangle$

"Desktop" Computing -Physical Parameters

e.g. Mac at your desk

$$C(t) = \sum_{n} A_{n} e^{-E_{n}t}$$
$$M_{N}(a, m_{\pi}, V)$$

Paradigm: Pion EM form factor

G. Huber, D.Gaskell, T. Horn PR12-16-003

NLO pQCD: hep-ph/0405062

No-go Theorem?

• First Challenge:

Euclidean lattice precludes calculation of light-cone/time-separated correlation functions

$$q(x,\mu) = \int \frac{d\xi^{-}}{4\pi} e^{-ix\xi^{-}P^{+}} \langle P \mid \bar{\psi}(\xi^{-})\gamma^{+}e^{-ig\int_{0}^{\xi^{-}} d\eta^{-}A^{+}(\eta^{-})}\psi(0) \mid P \rangle$$

So.... Use Operator-Product-Expansion to formulate in terms of Mellin Moments with respect to Bjorken x.

 $\rightarrow \langle P \mid \bar{\psi}\gamma_{\mu_1}(\gamma_5)D_{\mu_2}\dots D_{\mu_n}\psi \mid P \rangle \rightarrow P_{\mu_1}\dots P_{\mu_n}a^{(n)}$

• Second Challenge:

Discretised lattice: power-divergent mixing for higher moments

Moment Methods

- Extended operators: Z.Davoudi and M. Savage, PRD 86,054505 (2012)
- Valence heavy quark: W.Detmold and W.Lin, PRD73, 014501 (2006)

Solution....

Pseudo-PDFs

• Pseudo-PDF (pPDF) recognizing generalization of PDFs in terms of *loffe Time*. $\nu = p \cdot z$

A.Radyushkin, Phys. Rev. D 96, 034025 (2017) *et a*l, PRD51, 6036 (1995)

$$M^{\alpha}(p, z) = \langle p \mid \bar{\psi}\gamma^{\alpha}U(z; 0)\psi(0) \mid p \rangle$$

$$p = (p^{+}, m^{2}/2p^{+}, 0_{T}) \checkmark z = (0, z_{-}, 0_{T}) \qquad \text{loffe-Time Distribution}$$

$$M^{\alpha}(z, p) = 2p^{\alpha}\mathcal{M}(\nu, z^{2}) + 2z^{\alpha}\mathcal{N}(\nu, z^{2})$$

Ioffe-time pseudo-Distribution (pseudo-ITD) generalization to space-like z

Lattice "building blocks" that of quasi-PDF approach.

$$\int Lorentz \ covariant$$

$$\mathcal{M}(\nu, z^2) = \int_{-1}^{1} dx \ e^{i\nu x} \mathcal{P}(x, z^2) \quad \longleftarrow pseudo-PDF$$

$$f(x) = \mathcal{P}(x, 0) \underset{z_3^2 \to 0}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu e^{-i\nu x} \mathcal{M}(\nu, -z_3^2)$$

"Good Lattice Cross Sections"

+ analogous gluon operators

9

Pion Valence PDF

JPhys G

Revealing the structure of light pseudoscalar mesons at the Electron-Ion Collider

J Arrington¹, C Ayerbe Gayoso², PC Barry^{6,21}, V Berdnikov³, D Binosi⁴, L Chang⁵, M Diefenthaler⁶, M Ding⁴, R Ent⁶, T Frederico⁷, Y Furletova⁶, TJ Hobbs^{6,8,20}, T Horn^{3,6,*}, GM Huber⁹, SJD Kay⁹, C Keppel⁶, H-W Lin¹⁰, C Mezrag¹¹, R Montgomery¹², IL Pegg³, K Raya^{6,13}, P Reimer¹⁴, DG Richards⁶, CD Roberts^{15,16},

J Rodríguez-Quintero¹⁷D Romanov⁶, G Salmè¹⁸, N Sato⁶,

J Segovia¹⁹, P Stepanov³, AS Tadepalli⁶ and RL Trotta³ ¹ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

² Mississippi State University, Starkville, MS, USA

³ Catholic University of America, Washington, DC, USA

⁴ European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT^{*}) and Fondazione Bruno Kessler Villa Tambosi, Strada delle Tabarelle 286, 1-38123 Villazamo (TN) Italy

⁵ School of Physics, Nankai University, Tianjin 300071, China
 ⁶ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

⁷ Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, Brazil
 ⁸ Southern Methodist University, Dallas, TX 75275-0175, USA

⁸ Southern Methodist University, Dallas, TX 75275-0175, U
⁹ University of Regina, Regina, SK S4S 0A2, Canada

¹⁰ Michigan State University, East Lansing, MI 48824, USA

¹¹ IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
¹² SUPA School of Physics and Astronomy, University of Glasgow, Glasgow
G12 800. United Kinedom

¹³ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, C.P. 04510, CDMX, México

¹⁴ Argonne National Laboratory, Lemont, IL 60439, USA ¹⁵ School of Division Nucling Manifesting Manifesting Nucling ¹⁶ School of Division Nucling Manifesting Nucling Nucling ¹⁶ School of Division Nucling Nucling

¹⁵ School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
 ¹⁶ Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093. China

¹⁷ Department of Integrated Sciences and Center for Advanced Studies in Physics, Mathematics and Computation, University of Huelva, E-21071 Huelva, Spain

Major experimental initiatives

C.Roberts, D.Richards, T.Horn, L.Chang, arXiv:2102.01765, PPNP

X.Gao, C.Lauer N.Karthik, Y.Zhao

Perceiving the Emergence A Series of Hadron Mass through of Workshops AMBER@CERN 10 December 2019 : videoconference meeting 30 March to 2 April 2020 : videoconference workshop Autumn 2020 : workshop(s); date(s) to be defined Contact person at CERN TH dept. Organising committee Urs Wiedemann a Ian Friedrich (TUM, Munchen) Email: ehm.omber.2020.03@cero.ch Catarina Quintans (up. Le Web page indico.cern.ch/e/ambe

- Understanding pion goes to heart of origin of mass
- LQCD can study *isolated*, *unbound pion*
 - Potential to validate experimental analyses
- Computationally the most straightforward
 - But... .. signal-to-noise ratio degrades at high momentum

Good Lattice Cross Section

$$\sigma_{VA}(\omega,\xi^2) = \sum_{k=0} \lambda_k \tau^k + b_1 m_\pi + b_2 a + b_3 \xi^2 + b_4 a^2 p^2 + b_5 e^{-m_\pi (L-\xi)}$$
$$\tau = \frac{\sqrt{\omega_{\text{cut}} + \omega} - \sqrt{\omega_{\text{cut}}}}{\sqrt{\omega_{\text{cut}} + \omega} + \sqrt{\omega_{\text{cut}}}}$$

Inverse problem: extract PDF

"Inverse Problem" - ill-posed inverse Fourier transform.

$$\sigma_n(\nu,\xi^2,P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x,\mu^2) K_n^a(x\nu,\xi^2,x^2P^2,\mu^2) + \mathcal{O}(\xi^2 \Lambda_{\text{QCD}}^2)$$

Calculate on Lattice

Extract PDF?

Calculate in PQCD

Similar challenge to global fitting community!

$$q_{v}^{\pi}(x) = \frac{x^{\alpha}(1-x)^{\beta}(1+\gamma x)}{B(\alpha+1,\beta+1) + \gamma B(\alpha+2,\beta+1)}$$

NLO term well-controlled

Pion Valence Quark Distribution at Large x from Lattice QCD

Raza Sabbir Sufian,¹ Colin Egerer,² Joseph Karpie,³ Robert G. Edwards,¹ Bálint Joó,¹ Yan-Qing Ma,^{4,5,6} Kostas Orginos,^{1,2} Jian-Wei Qiu,¹ and David G. Richards¹

Sufian *et al.*, Phys. Rev. D102, 05408 (2020)

Determine large-x behavior \rightarrow need for finer resolution and reach in loffe time.

Pseudo-PDF Approach

$ID \\ a127m415$	a (fm) 0.127(2)	$m_{\pi} (MeV) 415(23)$	$\begin{array}{c}\beta\\6.1\end{array}$	am_l -0.280	am_s -0.245	$\begin{array}{c} L^3 \times N_t \\ 24^3 \times 64 \end{array}$	$\frac{N_{\rm cfg}}{2147}$	Same ensemble as LCS
a127m415L	0.127(2)	415(23)	6.1	-0.280	-0.245	$32^3 \times 96$	2560	

B.Joó et al., Phys. Rev. D 100, 114512 (2019).

Pion pPDF

NUCLEON STRUCTURE

Pseudo-PDFs

Moments of PDFs

Can extract moments - which does not require tackling the inverse problem

Different systematics from computation through local operators

Ioffe-Time Distribution to PDF

To extract PDF requires additional information - *use a phenomenologically motivated parametrization*

PDFs at Physical Quark Masses

PDFs at Physical Mass

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Opportunities and Challenges

A New Opportunity in Hadron Structure

Hadron Femtography

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Next Frontier: Flavor Singlet

Jefferson Lab

Outlook

- The breadth of physics that lattice QCD can address has grown to encompass most of the key physics of GHP
- Increasing trend: lattice QCD working with phenomenological analysis: JAM, NNPDF,...
- We are entering an exciting time:

+ quantum computing, machine learning!

GHP is an essential forum and voice!

