Highlights from the spin-polarized experiments: mapping the nucleon

April 14, 2021

9th workshop of the APS Topical

Group on
Hadronic Physics (GHP)

Caroline Riedl (UIUC)

	ble of contents	nucleon polarization			SD	
,		U	L	T	TMD	GPD
	Multiplicities	*			*	
	Sivers TMD			*	*	
	Twist-3 correlation functions			*	*	
	Transversity TMD \& Collins FF			*	*	
	Higher twist in SIDIS	*			*	
	DVCS	*	*	*		*
	Hard exclusive mesons	*	*			*
	Selected near future	*		*	*	*

For details, refer to parallel sessions

JLab dedicated talk: see talk by Dipangkar Dutta 11:00

RHIC-spin dedicated talk by Matt Posik Friday 16:00

Theory talks, e.g., by Daniël Boer and Barbara Pasquini Friday morning

BRODKHRNEN

NATIONAL LABORATORY

STAR PH: 棌ENIX

Jefferson Lab

Hall A Hall A
Hall C

The physics questions

How do quarks \& gluons, and their dynamics, make up proton spin?

How is the proton spin correlated with the motion of quarks/gluons?

Nucleon tomography

How does the proton spin influence the spatial distribution of partons?

Deformation of parton's confined motion

(collinear)
PDFs $q(x)$,1D
EIC "White Paper" arXiv:1212.1701, based on M. Anselmino et al., J. Phys. Conf. Ser. 295, 012062 (2011)

A. Bacchetta, U. D'Alesio, M. Diehl, and C. A Miller, Phys. Rev. D70, 117504 (2004)

Deep Inelastic Scattering: $\ell \mathrm{N} \rightarrow \ell(\mathrm{h}) \mathrm{X}$

The DIS cross section contains non-perturbative, noncalculable objects: Parton Distribution Functions (PDFs) encoding information about the momentumdependent distribution of quarks inside the proton.

longitudinal momentum fraction of parton (x-Bjorken)
add spin... for example, inclusive DIS:
"spin structure" or "helicity" function
of the proton
$g_{1}\left(x, Q^{2}\right)$
\rightarrow proton spin quark spin

[^0]SIDIS
semi-inclusive DIS

SIDIS cross section parameterized by structure functions

$" \sim$ harmonic $(\phi, \phi \mathrm{s}) \cdot \mathrm{PDF} \otimes \mathrm{FF} "$
fragmentation function FF
hard scattering cross section σ distribution function PDF

$$
\left\{F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi F_{U U}^{\cos \phi}\right\}+
$$

Worm-gear (Kotzinian-Mulders) ©
BM \otimes Collins Collins
$+S_{L}\left[\sqrt{2 \epsilon(1+\epsilon)} \sin \phi F_{U L}^{\sin \phi}+\epsilon \sin (2 \phi) F_{U L}^{\sin (2 \phi)}\right]+S_{L} \lambda_{e}\left[\sqrt{1-\epsilon^{2}} F_{L L}+\sqrt{2 \epsilon(1-\epsilon)} \cos \phi F_{L L}^{\cos \phi}\right]$

Bacchetta, Diehl, Klaus Goeke, Metz, Mulders, Schlegel, JHEP 02 (2007) 093
$F_{X Y[Z]}=$ structure function. $X=$ beam, $Y=$ target polarization,
[$Z=$ virtual-photon polarization]. $X, Y \in\{U, L, T\}$
$\lambda e=$ helicity of the lepton beam
S_{L} and $\mathrm{S}_{\mathrm{T}}=$ longitudinal and transverse target polarization - $\varepsilon=$ ratio of longitudinal and transverse photon fluxes

Unpolarized Longitudinally Transversely

Transverse momentum dependent (TMD) PDFs

$\uparrow \downarrow$ quark spin

(longitudinal direction = movement of nucleon)

[^1]TMDs surviving integration over k_{T}. "Collinear analysis"

Naive time-reversal odd TMDs describing strength of spin-orbit correlations.
chiral odd TMDs Exist because of chiral symmetry breaking of the QCD nucleon wave function

TMD effects in unpolarized SIDIS

New prelim COMPASS \boldsymbol{p}_{T} dependences $\&$ azimuthal asymmetries

Modern multi-dimensional binnings in p_{T}, Q^{2}, x, z, W allow for TMD evolution studies \& comparison between experiments

New data will help to clarify the double-Gauss structures in p_{T}

- Real $\left\langle k^{2}{ }^{2}\right\rangle$ underestimated

Importance of vector-meson decays (CLAS12)

$$
\begin{gathered}
\frac{\boldsymbol{d}^{2} \boldsymbol{N}^{h}\left(x, Q^{2} ; z, P_{T}^{2}\right)}{\boldsymbol{d z} \boldsymbol{d} \boldsymbol{P}_{T}^{2}} \propto \exp \left(-\frac{\boldsymbol{P}_{T}^{2}}{\left\langle\boldsymbol{P}_{T}^{2}\right\rangle}\right) \\
\left\langle P_{T}^{2}\right\rangle=z^{2}\left\langle k_{T}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle
\end{gathered}
$$

Towards a more complete mapping of the SIDIS landscape current vs. target fragmentation Phenomenological approximation for q_{T} works well for new COMPASS data.
$q_{T}=P_{\mathrm{T}} / z$ to validate region of TMD formalism [Boglione et al., JHEP10 (2019) 122]

Prelim CLAS12 pion multiplicities

courtesy G. Angelini / H. Avakian

- $0.2<z<0.3$
$\boldsymbol{\pi}^{+}$multiplicities in example
$\left(x, Q^{2}\right)$ bins, for various z

$$
\frac{\mathrm{d} M^{\mathrm{h}}\left(x, Q^{2}, z\right)}{\mathrm{d} z}=\frac{\sum_{a} e_{a}^{2} f_{a}^{f_{a}\left(x, Q^{2}\right)} D_{a}^{\mathrm{h}\left(z, Q^{2}\right)}}{\sum_{a} e_{a}^{2}\left(f_{a}\left(x, Q^{2}\right)\right)}
$$

Spin-orbit correlations in the proton

| If TMDs describing strength
 of spin-orbit correlations
 are non-zero: indicates
 parton orbital angular
 momentum (OAM). | $\vec{S}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)$ |
| :---: | :---: | :---: | :---: |
| No quantitative relation
 between TMDs \& OAM
 identified yet. | |
| Sivers function | |

Sivers effect: correlations between the nucleon transverse spin direction \& parton transverse momentum in the polarized nucleon

The Sivers function was originally thought to vanish (*).

A nonzero Sivers function was then shown to be allowed due to QCD final state
interactions (soft gluon exchange) in SIDIS between the outgoing quark and the target remnant (**).

[^2]
Sivers TMD in SIDIS

Final HERMES Sivers asymmetries

- Final compendium of HERMES TMD results. Refined analysis, multi-dimensional binnings, first (anti-)proton measurements. [HERMES JHEP 12 (2020) 010]

see talk by M. Diefenthaler, Wednesday 14:50

$\vec{S}_{T} \cdot\left(\widehat{P} \times \vec{k}_{T}\right)$

COMPASS Sivers asymmetries

Kaon amplitudes larger than pion
\sim Unexpected if uquark scattering dominates. Role of sea quarks? signs

$$
\begin{array}{|c|}
\hline \text { u- and d-quark } \\
\text { Sivers functions } \\
\text { have different }
\end{array}
$$

signs

Sivers signal smaller at COMPASS than at HERMES. TMD evolution...?

$\downarrow p_{\mathrm{T}}$-weighted asymmetries: direct measurement of TMD $k^{\top}{ }^{2}$ moments that avoids assumptions on shape of $k T$.
Products instead of convolutions of TMDs Products instead of convolutions of TMDs

$$
\begin{aligned}
& \text { [COMPASS NPB } 940(2019) \text { 34] } \\
& \text { [Anselmino et al., Phys.Rev. D86 (2012) 014028] }
\end{aligned}
$$

- Higher lepton-beam energy than at HERMES (160 GeV vs. 27.6 GeV)

Experimental TMD probes

COMPASS, STAR, SpinQuest

- Measuring TMD observables in different scattering processes allows to probe TMD universality.
- The naive time-reversal odd TMD PDFs - Sivers and the BoerMulders - are expected to switch sign when measured in SIDIS vs. Drell Yan. The experimental test of this prediction is an important test of TMD-QCD framework.

The Sivers sign switch

COMPASS Drell-Yan Sivers

STAR W $\pm / \mathrm{Z} A_{N}$

- COMPASS measurement of Sivers SIDIS \& DY asymmetries with ~same apparatus \& in overlapping kinematics
\downarrow Also other TMDs measured in DY, including Boer-Mulders and Lam-Tung relation on tungsten. see talk by A. Townsend, Wednesday, 16:10

Drell-Yan (DY) 2015 data

[COMPASS PRL 119 (2017) 112002]
C. Riedl (UIUC) - Spin-polarized experiments - GHP21

SIDIS in the DY kinematic range

- STAR: A_{N} in $\mathrm{p}^{\dagger} \mathrm{p} \rightarrow \mathrm{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm}+\mathrm{v}$

Curves with sign-change assumption

- Both collaborations currently working on the analysis of more data for the same channels.
- STAR measured first flavor-tagged dijet Sivers asymmetries in polarized pp that flip with charge sign. Connection between di-jet opening angle and k_{T}. [see DNP2019]

Left-right asymmetries

- The simultaneous description of left-right asymmetries A_{N} across multiple collision species indicates that all A_{N} have a common origin that is related to multi-parton correlations.
e.g. [Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (JAM Collaboration), PRD 102, 054002 (2020)]
- TMD factorization vs. collinear twist-3 factorization Example: the k_{T} moment of the Sivers TMD is related to the twist-3 Efremov-Teryaev-Qiu-Sterman (ETQS) function.

$$
\left.T_{q, F}(x, x)=-\int d^{2} k_{\perp} \frac{\left|k_{\perp}^{2}\right|}{M} f_{1 T}^{\perp, q}\left(x, k_{\perp}^{2}\right) \right\rvert\, \mathrm{SIDIS}
$$

A_{N} from TMD mechanism.

TMD factorization 2-scale problem $\boldsymbol{f}\left(\mathrm{x}, \boldsymbol{k}_{\mathrm{T}} ; \mathrm{Q}^{2}\right)$

SIDIS, DY, W/Z, dijets, hadrons in jets

The 2 factorization schemes are related and equivalent in the overlapping kinematics.

$$
A_{N}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

A_{N} from spin-momentum correlations (qgq or ggg)

Collinear twist-3 factorization
1-scale problem $f\left(x ; Q^{2}\right)$

[The RHIC spin program - achievements and future o
E. Aschenauer et al. arXiv:1304.0079]
single inclusive particle production in pp (particle or jet p_{T})

Continuation of measurements is important to further the understanding of the physical origin of A_{N}

Twist-3 tri-gluon correlations \& gluon Sivers

New PHENIX isolated direct-photon A_{N}

- Direct photons as clean probe
- first measurement in ~ 30 years, with higher p_{T} reach and $\sim 50 x$ better uncertainty

\downarrow Open heavy flavor A_{N} at PHENIX, new at DIS21 (D. Fitzgerald)

RHIC midrapidity measurements sensitive to tri-gluon twist-3 correlation functions \leftrightarrow
gluon Sivers TMD
no signals, at high precision

- How do these results relate to the nonzero SIDIS result from COMPASS?
- Photon-gluon fusion
with signature of 2 high- $p_{\text {т }}$ hadrons $\mathrm{p}+\mathrm{d}$: $A_{\text {siv }}=-0.23 \pm 0.08$ (stat) ± 0.05 (sys), PLB 772 (2017) 854
-Sivers asymmetry in J/Psi production in pion-proton collisions at COMPASS. Analysis in progress.

New PHENIX pion and eta $\boldsymbol{A}_{\mathrm{N}}$

GPM scenarios: [D’Alesio, Flore, Murgia, Pisano, Taels, PRD 99, 036013 (2019)]
see talk by J. Yoo, Wednesday 14:50
[PHENIX PRD 103 (2021) 5, 052009]

Subprocess fractions at RHIC energies for gg , qg, qq+qqbar
$\Delta A_{N} \Pi^{0}$ vs. $\eta:$ disentangle possible effects of strangeness, isospin, or mass. Improvement by factor of 3 in stat. uncertainty

STAR

$\checkmark \pi^{0}$ and electromagnetic jets using Forward Meson Spectrometer

[STAR arXiv:2012.11428]

A_{N} in the very forward

PHENIX

- Detection of very forward neutrons using a zero-degree calorimeter (ZDC)
~20m from PHENIX IP

[PHENIX PRD 103 (2021) 3, 032007]

RHICf

- RHICf(orward) calorimeter 18 m from STAR IP π^{0} in elmag jet, $2.8<\eta<4.0$
[RHICf PRL 124, 252501 (2020)]
A_{N} increases with p_{T} \& forwardness \& π^{0} isolation (STAR) \& γ multiplicity (STAR)
A_{N} from soft processes such as diffractive scattering?

Collins asymmetries

STAR hadrons in jets (midrapidity)

[STAR PRD 97 (2018) 032004]

Collins asymmetry Calculations based on SIDIS \& e+e- data assuming Collins factorization \& universality [PLB 773 (2017) 300]

First experimental constraint on Collins-like asymmetry, sensitive to linear gluon polarization (gluon analog to quark FF)

RHIC results enable

 tests of TMD universality and factorization breaking (expected for hadronic interactions)Collins-dihadron-interferencefragmentation asymmetry vs. dipion invariant mass in highest p_{T} bin.
[STAR PLB 780 (2018) 332]
new at DIS21 (B. Pokhrel)

- More STAR data analyzed in multidimensional binning \& kaons / protons:

Not shown today: FFs measured in $\mathrm{e}^{+} \mathrm{e}^{-}$at Belle, Barbar, BESIII

- Coupling of Collins to transversity TMD leads to azimuthal modulations of charged-hadron yields around the jet axis

- Two hard scales allow for TMD interpretation: $p_{\text {T }}$ of jet ${ }_{j \text { т }}$ of hadron in jet

Collins asymmetries in SIDIS $\begin{array}{ll}\mathrm{N} \uparrow \rightarrow \mathrm{eh}(\mathbf{h}) \mathbf{x}\end{array}$

HERMES \& COMPASS Collins asymmetries

COMPASS positive pions $x<0.032$ - COMPASS positive pions $x>0.032$
\circ HERMES π^{+}PLB 693 (2010) rescaled by $(1-\langle y\rangle) /\left(1-\langle y\rangle+\langle y\rangle^{2}\right)$
[HERMES JHEP 12 (2020) 010]

Mirror symmetry for π^{+}\& π^{-}: \boldsymbol{u} - $\left(\delta_{u}\right)$ and \boldsymbol{d}-quark
transversity (δ_{d}) have ~ equal magnitude \& opposite signs for favored and unfavored Collins FFs.

Transversity = valence-quark effect
(increase with x).

Global extractions - Collins function:

 - transversity: \quad Jaм20 --- Echeraria etal 14

- d-quark transversity less constrained given the u-quark dominance of many of the processes used in the global fits. COMPASS 2021 transversity run on the deuteron will double the experimental precision on the proton's tensor charge $\mathbf{g}_{\mathrm{t}}=\boldsymbol{\delta}_{\boldsymbol{u}}-\boldsymbol{\delta}_{\boldsymbol{d}}$ [CERN-SPSC-2017-034]
- Further prior-to-EIC measurements of Collins asymmetries: STAR with forward upgrade, sPHENIX, JLab12/SoLID, SpinQuest
\uparrow Check of TMD universality: COMPASS Collins asymmetries SIDIS vs. Drell-Yan.
\downarrow Alternative methods to access transversity: measure hyperon transverse polarization, which may have been transferred from struck quark
- COMPASS: SIDIS on trans.pol protons, to be submitted to PLB
- STAR:

Novel spin-dependent fragmentation functions

New COMPASS Collins asymmetry in ρ^{0} production

- Fragmentation function $\boldsymbol{H}_{1 L L}$ describing fragmentation of quarks in vector mesons.
- Investigate the different Collins mechanisms of spin-1 vector mesons vs. pseudoscalar mesons (ordinary Collins FF). Czyzewski model, Artru, string+3Po model
\checkmark Collins (and also Sivers) asymmetry for ρ^{0} production on transversely polarized proton target, new at DIS21 (A. Kerbizi)

New CLAS12 higher-twist di-hadron beam-spin asymmetry

\uparrow First empirical evidence of a nonzero parton helicitydependent di-pion fragmentation function $G_{\perp 1}$

- Encodes spin-momentum correlations in hadronization
- Equivalent to the Collins FF for two pions

In the ρ-mass region, can be used to test predictions by the Artru model about the relative size of Collins asymmetries of vector and scalar mesons

- Data also allow for a point-by-point extraction of the collinear-twist-3 PDF e(x) $d \sigma_{L U} \propto W \lambda_{e} \sin \left(\phi_{R_{\perp}}\right)\left(x e(x) H_{1}^{\varangle}\left(z, M_{h}\right)+\frac{1}{z} f(x) \tilde{G}^{\varangle}\left(z, M_{h}\right)\right)$ see talk by C. Dilks, Wednesday 15:30

[CLAS12 / T. Hayward arxiv:2101.04842]

More higher twist in single-hadron SIDIS

New CLAS12 and HERMES SIDIS beam-spin asymmetries

\uparrow Sizeable recent asymmetries from unpolarized target and longitudinally polarized lepton beam. Expected to be suppressed by $\mathcal{O}(\mathrm{M} / \mathrm{Q})$

- Provides access to so-far poorly known subleading twist-3 TMD PDFs \& fragmentation functions containing information about quarkgluon correlations in the proton and in the hadronization process

■ [CLAS12 / S. Diehl arXiv:2101.03544]

- [HERMES PLB 797 (2019) 134886]

V [CLAS Phys. Rev. D 89, 072011 (2014)]

$$
A_{L U}^{\sin \phi}=\frac{\sqrt{2 \epsilon(1-\epsilon)} F_{L U}^{\sin \phi}}{F_{U U, T}+\epsilon F_{U U, L}}
$$

[HERMES PLB 797 (2019) 1348861

Hard exclusive processes

From HERMES \& JLab-6 \& HERA to COMPASS \& JLab12 \& RHIC to the EIC

x, ξ : longitudinal momentum fractions of probed quark - skewness $\boldsymbol{\xi} \simeq X_{B} /\left(2-x_{B}\right)$ in Bjorken limit (Q^{2} large $\& x_{\mathrm{B}}, t$ fixed) - average mom. x : mute variable, not accessible in DVCS \& DVMP
t : squared 4-momentum transfer to target

$$
\ell p \rightarrow \ell p M
$$

Deeply Virtual
Compton
Scattering (DVCS)

Standard channels to access generalized parton distributions are DVCS \& DVMP
 4 chiral-even \& 4 chiral-odd GPDs

+ 4 chiral-odd GPDs: $\tilde{H_{T}} \leftrightarrow$ transversity TMD; $\left(2 H_{T}+E_{T}\right) \leftrightarrow$ Boer-Mulders; $\widetilde{E_{T}}$

2001: first observation of azimuthal modulation in DVCS spin asymmetry

(electrons on proton target)

$$
\mathcal{A}_{\mathrm{LU}}(\phi) \equiv \frac{d \sigma^{\rightarrow}-d \sigma^{\leftarrow}}{d \sigma^{\rightarrow}+d \sigma^{\leftarrow}} \quad \begin{aligned}
& \text { Beam-spin } \\
& \text { asymmetry }
\end{aligned}
$$

Exploring Compton Form Factors

possibility at JLab Halls B8C investigated see talk by M. Boer

- Flavor separation of CFFs: u-quark, d-quark

- Experimental access to GPDs via CFFs.

Access to different (parts of) CFFs via different experimental configurations: (target polarization, beam polarization, beam charge, and their combinations.

$$
\mathcal{H}(\xi, t)=\mathcal{P} \int_{-1}^{+1} \mathrm{~d} x \frac{H(x, \xi, t)}{x-\xi}-i \pi H(\xi, \xi, t)
$$

example: access via COMPASS beam-spin\&-charge asymmetries	$\mathrm{d} \sigma^{\ddagger}-\mathrm{d} \sigma^{\leftrightarrows}$
$\operatorname{Re}\left(\tau_{\text {Dvcs }}\right)$	$\mathrm{d} \sigma^{\ddagger}+\mathrm{d} \sigma^{\rightrightarrows}$
integral over \mathbf{x}	$\operatorname{Im}\left(\tau_{\text {Dvcs }}\right)$
$\mathbf{x}=\xi$	

COMPASS DVCS asymmetries

(results to come)

- Dispersion relation with D-term $D(t)$: related to shear forces and radial distribution of pressure inside the nucleon

$$
\mathcal{R} e \mathcal{H}(\xi, t)=\mathcal{P} \int_{-1}^{+1} \mathrm{~d} x \frac{\operatorname{Im} \mathcal{H}(x, t)}{x-\xi}+D(t)
$$ access at CLAS12 e.g. via TCS = time-reversal symmetric process of DVCS. First results from fall 2018 data expected very soon.

```
CLAS12 TCS
```


CLAS12 proton DVCS

Impact on radial pressure distribution by CLAS and expected impact by CLAS12

[V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396-399 (2018)]

Transverse imaging of the nucleon

$$
\frac{\mathrm{d} \sigma^{\mathrm{DVCS}}}{\mathrm{~d} t} \propto e^{-b|t|}
$$

b = "t-slope" = average impact parameter

Impact-parameter representation:
$q^{f}\left(x, \boldsymbol{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \boldsymbol{b}_{\perp}} H^{f}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$
[Burkardt, Int. J. Mod. Phys. A18 (2003) 173]
\downarrow Determination of transverse extension of partons

- in the Bjorken-x domain of COMPASS between valence quarks and gluon - 2012 DVCS data on LH_{2} target (10% of 2016/17) with recoil-proton detector CAMERA
$\sqrt{\left\langle r_{\perp}^{2}\right\rangle}=\left(0.58 \pm\left. 0.04_{\text {stat }}{ }_{-0.02}^{+0.01}\right|_{\text {sys }} \pm 0.04_{\text {model }}\right) \mathrm{fm}$

COMPASS DVCS \boldsymbol{t}-slope

DVCS
Bethe-Heitler (BH)

$$
=\left|T_{\mathrm{BH}}\right|^{2}+\left(T_{\mathrm{DVCS}} T_{\mathrm{BH}}^{*}+T_{\mathrm{DVCS}}^{*} T_{\mathrm{BH}}\right)+\left|T_{\mathrm{DVCS}}\right|^{2}
$$

BH reference DVCS amplitude: Transverse imaging ϕ-integrated cross
ϕ-modulations in cross section section $32<v[\mathrm{GeV}]<80$

 $10<v[\mathrm{GeV}]<32$

$\Delta p_{T}=\Delta p_{T}^{\text {cam }}-\Delta p_{T}^{\text {spoe }}$

new. $2016 / 17$ DVCS data ($\sim 25 \%$ of available
data, 2 times more than 2012 data) on LH_{2} target with recoil-proton detector CAMERA

New at DIS21 (B. Ventura)

GPD E linked to orbital angular momentum

$$
\begin{aligned}
& \text { Ji sum rule for the nucleon: } \quad \text { [Ji, PRL } 78 \text { (1997) 610] } \\
& J_{\mathrm{q}}=\frac{1}{2} \lim _{t \rightarrow 0} \int_{-1}^{1} \mathrm{~d} x x\left[H^{\mathrm{q}}(x, \xi, t)+E^{\mathrm{q}}(x, \xi, t)\right]
\end{aligned}
$$

\downarrow CLAS12: DVCS on the neutron ($L D_{2}$ target with neutron detector), analysis in progress

- CLAS12: on the transversely polarized proton, data to be taken
- All so-far discussed GPDs were quark GPDs
\uparrow STAR: exclusive J/Psi production in ultra-peripheral collisions (UPC) \rightarrow gluon GPD E Significant improvement of precision expected with the upgrades (iTPC \& forward), more data will be taken

\downarrow RHIC with UPC and COMPASS with high-energy muon beams at CERN will
 provide first results of sea quarks and gluons at small x_{B}.

CLAS12 DVCS beam-spin asymmetries on the deuteron (neutron)

> CLAS12 DVCS target-spin asymmetries on the transversely polarized proton

STAR excl. J/Psi A_{N} in UPC, GPD
E of the gluon

Exclusive $\pi^{0} \& \pi^{ \pm}$production

COMPASS excl. π^{0} cross section

$\mathrm{ep} \rightarrow \mathrm{e} \pi^{0} \mathrm{p} \quad \frac{d^{2} \sigma}{d t d \phi_{\pi}}=\frac{1}{2 \pi}\left[\left(\epsilon \frac{d \sigma_{L}}{d t}+\frac{d \sigma_{T}}{d t}\right)+\epsilon \cos 2 \phi_{\pi} \sqrt{\frac{d \sigma_{T T}}{d t}}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{\pi} \pi \frac{d \sigma_{L T}}{d t}\right]$

σ_{LT} smaller but significantly positive as at CLAS

CLAS12 excl. π^{0} beam-spin asymmetry Analysis in progress, to be released very soon.

CLAS12 excl. π^{+}beam-spin asymmetry to improve the extraction on H_{T}

Analysis in progress

Spin density matrix elements in $\ell p \rightarrow \ell \mathrm{pVM}$

 [HERMES EPJC 74 (2014) 3110]
[Goloskokov, Kroll EPJ A (50 2014) 146]

Spin density matrix

 elements describe how the spin components of the virtual photon are transferred to the created vector meson- Test of hierarchy of helicity amplitudes
- Test of hypothesis of s-channel helicity conservation (SCHC)
- Evaluation of unnatural-parity-exchange transitions
- Determination of phase differences between helicity amplitudes \& longitudinal-to-transverse cross-section ratio.
Constraints on GPD parameterizations beyond cross section and spin-asymmetry measurements.
C. Riedl (UIUC) - Spin-polarized experiments - GHP21
if SCHC $\left(\lambda_{\gamma^{*}}=\lambda_{v m}\right) \quad$ measured
$r_{1-1}^{1}+\operatorname{Im}\left\{r_{1-1}^{2}\right\}=0 \quad-0.010 \pm 0.032 \pm 0.047$
$\operatorname{Re}\left\{r_{10}^{5}\right\}+\operatorname{Im}\left\{r_{10}^{6}\right\}=0 \checkmark \quad 0.014 \pm 0.011 \pm 0.013$
$\operatorname{Im}\left\{r_{10}^{?}\right\}-\operatorname{Re}\left\{r_{10}^{8}\right\}=0 \quad-0.088 \pm 0.110 \pm 0.196$
- Considerable SCHG in $\gamma^{*}{ }^{\top} \rightarrow \omega_{\mathrm{L}}$ (class C), with interesting kinematic dep. Transitions sensitive to chiralodd GPDs H_{T} and E_{T}
- Cross-section ratio R of longitudinal to transverse vector mesons comparison to HERMES

see W. Augustyniak, DIS21

 shaded: polarized elements $\left\langle Q^{2}\right\rangle=2.1(\mathrm{GeV} / c)^{2},\langle W\rangle=7.6 \mathrm{GeV} / c^{2},\left\langle p^{2}\right\rangle=0.16(\mathrm{GeV} / c)^{2}$ [COMPASS EPJC (2021) 81 126]

More exclusive measurements

New CLAS coherent DVCS

- For the first time, DVCS beam-spin asymmetry in the coherent channel measured to be larger than the in incoherent proton channel, thanks to measuring the helium recoils using a radial TPC. Recoil in nuclear DVCS at HERMES was not detected
see talk by R. Dupré, Wednesday 13:30

Coherent DVCS

allows to study if the DVCS amplitude rises with A and if there is a 'generalized EMC effect'

[CLAS / R. Dupre arxiv:2102.07419]

coherent

incoherent

New CLAS excl. π^{+}beam-spin asymmetries in the backward

Exclusive pion production in the backward allows to study nucleon-topion baryonic transition distribution amplitudes (TDAs), a further generalization of the GPD concept

[CLAS / S. Diehl PRL125, 182001]

More measurements planned at CLAS12!

Selected near future - before the EIC

- JLab 12 GeV high-luminosity facility:
- Has started experimental program
- New generation of precision data for valence auarks to come from CLAS12, SoLID, et al. see talk by D. Dutta, Wednesday 11:00

\rightarrow STAR cold QCD with forward upgrade at RHIC:

- Tracking system of silicon \& small TGC
- Forward electromagnetic \& hadronic calorimetry, $2.5<\eta<4$
- midrapidity: improve statistics of Sivers via dijet \& W/Z, Collins via hadrons in jets, GPD E via J/Psi UPC
- forward rapidity: TMDs at high-x \& GPD E
- and more, https://drupal.star.bnl.gov/STAR/files/ForwardUpgrade.v20.pdf
- sPHENIX cold QCD program at RHIC: $-2024, \mathrm{p}^{\dagger} \mathrm{p}^{\dagger} \& \mathrm{p}^{\dagger} \mathrm{A}, \sqrt{ } \mathrm{S}_{\mathrm{NN}}=200 \mathrm{GeV}, \mathrm{n}= \pm 1.1$
- Design optimized for heavy-flavor measurements

with jets and displaced vertices with MAPS-based vertex tracker
- Gluon Sivers TMD via A_{N} in single-photon \& heavy flavor
- Di-hadron IFF / Collins asymmetry \& transversity TMD
via hadron-charge tagging \& hadron-in-jet
- and more, sPHENIX-note sPH-cQCD-2017-002
see talk by J. Frantz, Wednesday 15:50

SpinQuest / E1039 at FNAL (2021++):

- Transversely polarized $\mathrm{NH}_{3} / \mathrm{ND}_{3}$ target with E906 spectrometer
- First polarized DY experiment with proton beam
- Sivers \& transversity TMDs of sea quarks.
see talk by C. Ayuso, Wednesday 16:30

- COMPASS transversity run 2021

- transversely polarized ${ }^{6}$ LiD target for d-quark transversity et al.
- AMBER / NA66 at the CERN M2 beamline:
- Beam time approved for phase 1 after 2021 after the end of COMPASS, no time window yet.
- Pion structure in phase I with pion beams
- Kaon structure in phase II with kaon beams
- TMDs with π, K , anti-proton beams
- and more (e.g., proton radius in elastic up scattering),
https://nqf-m2.web.cern.ch
- J-PARC, meson \& anti-proton beams, https://j-parc.jp/Hadron/en/index.html
- LHCspin at CERN, fixed trans.polarized H2 \& D2 targets with LHCb as forward spectrometer, >2025, https://inspirehep.net/literature/1821190
- AFTER @LHC, CERN fixed target, >2025, https://doi.org/10.1016/j.physrep.2021.01.002

- SPD at NICA, JINR: collider experiment with polarized proton and deuteron beams, >2025, http://spd.jinr.ru/

- PANDA at FAIR, fixed target with anti-proton beams, https://panda.gsi.de/article/panda-physics
- EicC (China) at HIAF, > 2025, arXiv:2102.09222

Summary and outlook

\uparrow Experiments at BNL, JLab, FNAL, CERN, DESY, RIKEN, JPARC, et al. unravel proton and nucleus structure.

The spins of quarks and gluons contribute to the proton's spin and there is indication they also possess orbital angular momentum. The nucleon is explored via tomographic images in transverse-momentum- and position-space using data from various types of scattering experiments.
In transverse-momentum space ($\boldsymbol{k}_{x}, \boldsymbol{k}_{y}$): density distribution of unpolarized u-quark in transversely polarized proton at $x=0.1$ and $Q^{2}=4 \mathrm{GeV}^{2}$

In impact-parameter space ($\left.b_{\perp,}, x\right)$:
position of up quarks in an unpolarized proton at $t=-0.3 \mathrm{GeV}^{2}$ and $\mathrm{Q}^{2}=2 \mathrm{GeV}^{2}$

PARTONS fits 2018-1 using world data of elastic form factors and DVCS proton data from HERMES, CLAS, Hall A and COMPASS [Moutarde, Sznajder, Wagner, EPJ C78, 890 (2018)]
\uparrow The Electron Ion Collider will be the ultimate tool to precisely map the rich spin- and multi-dimensional structure of nucleons and nuclei from low- to high $X_{\text {Bjorken }}$.

[^0]: C. Riedl (UIUC) - Spin-polarized experiments - GHP21

[^1]: - 8 TMD (PDFs) needed at leading-twist description.
 - Analog table for fragmentation functions (capital letters except for $U U=D_{1}$)
 - Flavor indices and kinematic dependences skipped for simplicity

[^2]: (*) $^{(*)}$ [J. C. Collins, Nucl. Phys. B396, 161 (1993)]
 ${ }^{(* *)}$ [S. J. Brodsky et al., Phys. Lett. B530, 99 (2002)]

