Dynamical core-corona picture from small to large colliding systems

Yuuka Kanakubo¹, Yasuki Tachibana², Tetsufumi Hirano¹
 Sophia University¹, Akita International University²

2021/04/13 9th workshop of the APS Topical Group on Hadronic Physics

O Introduction

Towards hydro-based MC event generator

Towards hydro-based MC event generator

Comprehensive understandings from pp to AA

Dynamical core-corona initialization model

Y. Kanakubo et al., PTEP 2018 12, 121D01 (2018); Phys. Rev. C 101 2, 024912 (2020)

Core: thermalized matter (hydrodynamics) Corona: non-thermalized partons (string fragmentation)

How do we interpret this p_T spectrum ?

One might think...

Instead of **soft/hard**, we separate system into **core/corona**.

NEW Dynamical Core-Corona Initialization model 2

Model flowchart of DCCI2

159 (2015)

Commun. 191,

Comput. Phys.

et al.,

Sjöstrand

⊢ : .:

Y. Kanakubo et al., in preparation

Dynamical initialization framework

M. Okai *et al.*, Phys. Rev. C 95, 054914 (2017)

Energy & momentum conservation of a total system, thermalized matter (fluids) + non-thermalized partons

Assuming Gaussian profile/straight trajectory for a parton...

$$J^{\nu} \to -\sum_{i} \frac{dp_{i}^{\nu}(t)}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$
G: Gaussian function

"Source" = "Four-momentum deposition rate of partons"

Dynamical core-corona initialization

Core-corona picture

 \sim EoM with a drag force due to secondary scatterings

$$\frac{dp_i^{\mu}}{dt} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_i^{\mu}$$

Defined at a co-moving frame with $\eta_{s,i}$

N_{scat}: **# of (thermalized and non-thermalized) partons** scattered with *i*th parton

Low p_T and/or dense region Core (hydro)

High p_T and/or dilute region

Corona (string fragmentation)

O Results from DCCI2

Particle ratios: multi-strange hadrons

Adam et al.,

Particle ratios of multi-strange hadrons \rightarrow reasonably described by DCCI2 for both pp and PBPB.

Parameter determination in DCCI is done! Let's see outputs :)

Multiplicity of charged particle

539 (2017)

535.

 \mathbf{m}

 $\overline{}$

Collaboration), Nature Phys.

Adam et al., (ALICE

- Smooth transition of each contribution as a function of multiplicity
- Dominant contribution flips at ~ 5 % in pp and ~ 85 % in PbPb.

Fraction of core/corona vs. $\langle dN_{\rm ch} / d\eta \rangle$ from pp to PbPb

Clear scaling with multiplicity

- Change of dominant contribution at $\langle dN_{\rm ch}/d\eta \rangle \sim 15$
- Even in central PbPb,
 ~ 15 % of corona contribution

Transverse momentum spectra in MB

A sizable correction to hydro (core) results

Keep in mind soft from corona!

G. Aad

Corona correction in PbPb

Corona correction dilute $\langle p_T
angle$ by ~5-6%

Corona correction dilute $v_2\{2\}$ by ~15-20 %

Summary

New results from updated dynamical core-corona initialization model (DCCI2)

As a result of modeling of hydro-based MC event generator to explain pp to AA...

- Clear multiplicity scaling of core/corona fraction
- Core contribution become dominant above $\langle dN_{\rm ch}/d\eta \rangle \sim 15$
- pp: core contribution gets dominant only at very high multiplicity ($\leq 5\%$)
- (Central)PbPb: ~ 15% of corona contribution remains
- Corona correction reduces $\langle p_T \rangle$ by ~5-6%, $v_2\{2\}$ by ~15-20% in PbPb

Instead of **soft/hard**, we separate system into **core/corona**.

