Collinear PDFs - Sebastian Kuhn

COLLINEAR PDF: STATUS AND OUTLOOK

Sebastian Kuhn Old Dominion University Norfolk, Virginia

Overview

- Collinear Structure of the Nucleon -
- Polarized and Unpolarized PDFs
- Recent Results
 - Spin-Averaged PDFs
 - Spin-Dependent PDFs
- Outlook
 - Future Experiments
 - EIC

Collinear Parton Distribution Functions - (still) highly relevant!

 $F_2^{em}\text{-}log_{10}(x)$

- The 1D world of nucleon collinear structure:
 - Take a nucleon
 - Move it real fast along z \Rightarrow light cone momentum $P_{+} = P_{0} + P_{z} (>>M)$
 - Select a "parton" (quark, gluon) inside
 - Measure its I.c. momentum $p_{+} = p_{0} + p_{z} \text{ (m}\approx 0)$

 $- \Rightarrow$ Momentum Fraction x = p_+/P_+^{*}

- In DIS^{**)}:
$$p_+/P_+ \approx \xi = (q_z - v)/M$$

 $\approx x_{Bj} = Q^2/2M_V$

- Probability:
$$f_1^i(x), i = u, d, s, ..., G$$

In the following, will often write " $q_i(x)$ " for $f_1'(x)$

^{**)} DIS = "Deep Inelastic (Lepton) Scattering; here assuming target rest frame

Ζ

Inclusive lepton scattering

Wandzura-Parton model: DIS can access $F_1(x) = \frac{1}{2} \sum e_i^2 q_i(x)$ (and $F_2(x) \approx 2xF_1(x)$) Wilczek $g_1(x) = \frac{1}{2} \sum_{i=1}^{i} e_i^2 \Delta q_i(x) \left(\text{and } g_2(x) \approx -g_1(x) + \int_x^1 \frac{g_1(y)}{y} \right)$

 $q(x;Q^2), \langle h \cdot H \rangle q(x;Q^2)$

"1-D" Parton Distributions (PDFs) (integrated over many variables)

At finite Q²: pQCD evolution ($q(x,Q^2), \Delta q(x,Q^2) \Rightarrow$ DGLAP equations), and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

Callan-Gross

4

 \Rightarrow access to gluons. $\frac{\partial C_a}{\partial C_g} - Wilson$ coefficient functions

SIDIS: Tag the flavor of the struck quark with the leading FS hadron \Rightarrow separate $q_i(x,Q^2)$, $\Delta q_i(x,Q^2)$ Fixed target kinematics: $Q^2 \approx M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

- Non-zero $R = \frac{F_2}{2xF_1} \left(\frac{4M^2x^2}{O^2} + 1 \right) 1, \ g_2^{HT}(x) = g_2(x) g_2^{WW}(x)$
- Further Q²-dependence (power series in $\frac{1}{Q^n}$) Ultra-low Q²: χ PT, EFT,...

Moments of Structure Functions

Importance of *high* x!

Related to matrix elements of local operators (OPE) - in principle accessible to lattice QCD calculations

Sum rules relate moments to the total spin carried by quarks in the nucleon (and β -decay matrix elements), sea quark asymmetries etc.

At low Q²: Higher Twist, Parton-Hadron Duality, Chiral Perturbation Theory, GDH Sum Rule all make predictions for moments

Gottfried Sum Rule:

$$\int_{0}^{1} \left[F_{2}^{p}(x,Q^{2}) - F_{2}^{n}(x,Q^{2})\right] \frac{dx}{x} = \frac{1}{3} - \frac{2}{3} \int_{0}^{1} \left[\bar{d}(x,Q^{2}) - \bar{u}(x,Q^{2})\right] dx \Gamma_{1}$$

$$F_{1}\left(Q^{2}\right) = \int_{0}^{1} g_{1}\left(x,Q^{2}\right) dx \qquad \text{DIS}_{pQCD}$$
operator
product
expansion
$$\int_{0}^{0} g_{1}(x,Q^{2}) dx = \frac{1}{3} - \frac{2}{3} \int_{0}^{1} \left[\bar{d}(x,Q^{2}) - \bar{u}(x,Q^{2})\right] dx \Gamma_{1}$$

$$Gpresson Sum Rule: \Gamma_{1}^{p} - \Gamma_{1}^{n} = \frac{g_{A}}{6} + QCD \text{ corr.}$$

$$GDH Sum Rule: \Gamma_{1}\left(Q^{2} \rightarrow 0\right) \rightarrow -\frac{Q^{2}}{2M^{2}} \frac{\kappa^{2}}{4}$$

$$\dots \text{and } \gamma_{0}, \delta_{\text{LT}}$$

$$Q^{2} (GeV^{2})$$

$$GDH sum rule$$

1

Unpolarized PDFs

Unpolarized PDFs

Unpolarized PDFs– high x

Nucleon Model	F_2^{n}/F_2^{p} $X \rightarrow 1$	d/u $X \rightarrow 1$	1
			0.8
SU(6) Symmetry	2/3	0.5	0.6
Scalar diquark dominance	1/4	0	n/
DSE contact interaction	0.41	0.18	່ອີ 0.4
DSE realistic interaction	0.49	0.28	0.2
PQCD (helicity conservation)	3/7	0.2	0

d/u from...

- F_{2n}/F_{2p} , but
 - Free neutron targets don't exist
 - Extraction from D data complicated by Binding, Fermi Motion, FSI
- 3H/3He, but
 - Still only smeared SF ratios
 - Requires assumptions about isospin-dependence of EMC effect
- PVDIS, but limited by statistics

Spectator Tagging – BONuS12

BONuS12

- CLAS12 Forward Detector:

- \rightarrow Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - \rightarrow HTCC
 - \rightarrow 3 regions of DCs
 - \rightarrow LTCC /RICH
 - \rightarrow FTOF Counters
 - \rightarrow PCAL and ECs

- Central Detector:

- \rightarrow Solenoid (3.5 4 T)
- \rightarrow Target: D gas @ 6 atm, 293 K
- \rightarrow BONuS12 RTPC
- \rightarrow FMT
- \rightarrow CTOF, and CND

Beam Energy	Target	Spring 2020	Summer 2020	
1 Pass Data	H2	81M	185M	
	D2	37M	45M	
	4He	19M	44M	
	Empty	1M	22M	
	Total	138M	296M	
	H2	151M	266M	
5 Pass Data	D2	2275M	2355M	
	4He	77M	51M	
	Empty	21M	45M	
	Total	2524M	2717M	

February – March 2020 | MEDCON6 | August-September 2020

BONuS12 - 2.1 GeV Data

BONuS12 – 10.4 GeV Data

11

Projected JLab@12 GeV d/u Results

Polarized Structure Functions - Duality

Compare 4-6 GeV g_{1p} data (eg1b) to JAM DGLAP fits in the DIS region (W>2).

Low Q^2 – testing χPT

Polarized PDFs – pp collisions

Future PDFs: What's left to do for Jefferson Lab?

 $\prod_{n=1}^{\infty} 0^n$ proton momentum (light-cone momenta α_p and p_{pT}). In the limit $t - M_N^2 \to 0$ (on-shell extrapolation) the tagged spin asymmetry coincides with the free neutron spin asymmetry $A_{\parallel n}$ [108, 109]. The uncertainties shown are statistical ($L_{\text{int}} = 20 \text{ fb}^{-1}$, $P_e P_d = 0.5$).

0.10 0.05-0.05-0.10-0.10 10^{-5} 10^{-4} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} x x

SUMMARY: COMPLETING Resolution, Q^2 (GeV²) $\frac{1}{c^0}$ THE PICTURE

Enormous Progress on understanding Collinear PDFs fueled by large new data sets and sophisticated phenomenology. Still, some questions remain:

- d/u, $\Delta u/u$ and $\Delta d/d$ at high x?
- **Nuclear effects on nucleon structure**
- Understanding the sea Δs , \overline{u} \overline{d} , $\Delta \overline{u}$ $\Delta \overline{d}$? JLab, FNAL, RHIC, AMBER, LHC

 Q^2

10⁴

e+p

10⁻⁴

JLab @

12 GeV

Current polarized DIS e/µ+p data:

Current polarized RHIC p+p data:

10⁻³

2 GeV, 0.01 5V.

 10^{-2}

Parton momentum fraction. x

10⁻¹

 X^{1}

- Axial and Tensor charges of the nucleon COMPASS, JLab
- Gluon helicity distribution at large x AND at small x? What is the integral ΔG ? JLab + DGLAP. Total contribution of parton helicity to proton spin? **RHIC**, COMPASS
- What happens at really small x << 0.01?