Probing the antiquark distributions in the proton via unpolarized and polarized Drell-Yan experiments at Fermilab

> GHP 2021 14 April 2021

Kenichi Nakano

Tokyo Tech \Longrightarrow University of Virginia

Outline

- 1. Two Drell-Yan experiments @ Fermilab
 - "SeaQuest" with unpolarized targets
 - "SpinQuest" with polarized targets
- 2. Spectrometer
- 3. Selected results of SeaQuest
 - Flavor asymmetry $\bar{d}(x)/\bar{u}(x)$... published on *Nature 590, 561* in Feb. 2021
 - Nuclear effect on antiquarks $(R_A \text{ vs } x_{target})$
- 4. Aim & status of SpinQuest
- 5. Conclusions

Access to Antiquarks via Drell-Yan Process

- Drell-Yan process: $p+p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{beam} x_{target} s$, Rapidity: $\exp Y = \sqrt{x_{beam}/x_{target}}$
 - Bjorken $x_{beam} = \frac{M}{\sqrt{s}}e^{Y}$, $x_{target} = \frac{M}{\sqrt{s}}e^{-Y}$
- Cross section at LO:

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t} \frac{1}{s} \sum_{q=u,d} e_q^{-2} \left\{ q_b(x_b) \bar{q}_t(x_t) + \bar{q}_b(x_b) q_t(x_t) \right\}$$

- Only " $q_b(x_b)\bar{q}_t(x_t)$ " survives @ forward rapidity $\implies q$ having $x_b \& \bar{q}$ having x_t are distinguishable event-by-event
- Lower rate because of EM interaction
 - \Longrightarrow Need larger luminosity
 - & compete with more BGs

Drell-Yan Experiments @ Fermilab

- Beam: Proton at 120 GeV ($\sqrt{s} = 15$ GeV) from Main Injector
 - $^\circ~$ Intensity $\sim 10^{12}$ protons/sec
- SeaQuest/E906
 - Target: (Unpolarized) LH2, LD2, C, Fe, W
 - Data taking: 2013-2017 (completed)
 - Physics
 - •• Flavor asymmetry $\bar{d}(x)/\bar{u}(x)$
 - •• Nuclear effects
 - $\circ\circ~$ Via J/ψ production
 - •• and more
- SpinQuest/E1039
 - Spectrometer: Inherited from SeaQuest
 - Target: Transversely-polarized NH3, ND3
 - Data taking: 2021-2023 (planned)
 - Physics
 - $\circ\circ~$ Sivers asymmetry of \bar{d} & \bar{u}
 - •• and more

P > 90% for NH3

SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

Probing the \bar{q} distributions in the proton via (un)polarized Drell-Yan experiments at Fermilab

SeaQuest Topic #1: Flavor Asymmetry $\overline{d}(x)/\overline{u}(x)$

- Symmetric in gluon splitting ($g
 ightarrow u ar{u}$ or $d ar{d}$)
- CERN NMC ('90): deep inelastic muon scattering
 - $\circ~~ ext{Gottfried Sum:}~S_G=0.235\pm0.026<1/3$
 - $\int_0^1 \bar{d}(x) dx \int_0^1 \bar{u}(x) dx = 0.147 \pm 0.039$... Discovery of flavor asymmetry!
- Measurement of x dependence of $\overline{d}(x)/\overline{u}(x)$: Drell-Yan process
 - $\circ~$ CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

- Studied actively by effective QCD models & lattice QCD
 - Precise measurement at larger x was wanted

Probing the \bar{q} distributions in the proton via (un)polarized Drell-Yan experiments at Fermilab

• SeaQuest result (published in February 2021)

- Systematic errors
 - Correction for random BG & measurement efficiency (via "beam-intensity extrapolation")
 - Relative luminosity
- Large asymmetry at high $x (\leq 0.45)$ as well as low x

• Comparison to existing PDFs

• Unique data to constrain anti-quark PDFs at high *x* in global analyses (e.g. CJ15-a')

• Comparison to model calculations

- Reasonably described by the predictions of
 - •• "Pion cloud model" (Alberg & Miller) and
 - •• "Statistical model" (Basso et al.)
- $\circ~$ Further studies are anticipated to understand the true mechanism
 - •• $\bar{d}(x)/\bar{u}(x)$ at higher $x \gtrsim 0.6$
 - •• Relation to polarized distributions $(\Delta \bar{d}(x) \& \Delta \bar{u}(x))$
 - •• Relation to orbital angular momenta

SeaQuest Topic #2: Nuclear Effects

- $R_A \equiv \hat{\sigma}^{p+A} / \hat{\sigma}^{p+p}$
 - = Ratio of per-nucleon cross sections
- 1. R_A vs x_{target} : Effect on antiquarks
 - Smaller than that on quarks? (PRL64, 2479)
 - $\circ 0.1 < x_{target} < 0.45$
 - Preliminary result in October 2019
- 2. Effect on quarks in beam proton= Parton energy loss in cold-nuclear matter
 - 2.1 R_A vs x_{beam} : Energy loss
 - $^{\circ\circ}~x_{beam} > 0.6, x_{target} > 0.15$
 - •• "Preview" result at HAWAII 2018 etc.
 - 2.2 R_A vs p_T : p_T broadening
 - $\circ \circ 0.1 < x_{target} < 0.45$
 - •• Preliminary result in April 2020
 - R_A should be comprehensively examined to untangle the effects of nuclear PDFs and partonic energy loss

• E866

• Result of " R_A vs x_{target} "

 $\circ R_A$ deviates from 1 by 10% at max

- $\,\circ\circ\,\,$ Different from quarks ($R_A\gtrsim 1.1)!$
- •• Close to the calculation of pion excess model by Miller (PRC 64, 022201)
- Same trend as the EMC effect (i.e. R_A decreases at middle x)

• Comparison with E772 result

- Agreement within measurement accuracy
- $\circ~$ Better precision at $x_{target}\gtrsim 0.2$ by SeaQuest

SpinQuest/E1039

• Sivers distribution: $f_{1T}^{\perp}(x)$

 \circ Correlation of parton k_T with proton spin

- Extraction by global analyses
 - PRD 88 (2013) 114012, P. Sun & F. Yuan
 - PRD 89 (2014) 074013, M. G. Echevarria et al.
 - JHEP 04 (2017) 046, M. Anselmino et al.
 - •• Use of HERMES, COMPASS & JLab data
 - •• First moment of Sivers function: $x\Delta^N f^{(1)}(x) \equiv -xf_{1T}^{\perp(1)}(x)$
- f[⊥]_{1T}(x) of anti-quarks is not well known
 Since q̄ & q are mixed up in SIDIS
- SpinQuest will
 - $\circ~$ Measure Sivers asymmetry of $ar{u}$ & $ar{d}$
 - Via proton-induced Drell-Yan process
 - Using new polarized targets of NH3 & ND3

Anticipated Sensitivity

- Conditions
 - Two years of data taking
 - $NH_3:ND_3 = 50\%:50\%$ in time
 - Details in the E1039 proposal
- TSSA: $A_{UT}^{\sin \phi_S} = A_N$
 - $\circ~~{
 m Measurement~precision}~\delta_{A_N}\sim 0.04$
 - $^\circ~~{
 m Two}~{
 m predictions}~{
 m of}~A_N~{
 m of}~{
 m NH}_3$
 - $^{\circ\circ}~$ Calculations based on SIDIS data
 - Blue line takes into account the Collins-Soper-Sterman scale evolution
- Aim to observe non-zero anti-quark Sivers asymmetry!!

Phys. Rev. D88, 034016 (2013)

Eur. Phys. J. A39, 89 (2009)

Probing the \bar{q} distributions in the proton via (un)polarized Drell-Yan experiments at Fermilab

Timeline of SpinQuest

Year	Month	Event
2018	May	Granted Stage-2 approval from Fermilab
		Decommissioned SeaQuest components
2019	June	Transfered the pol. target from UVA to Fermilab
		Commissioned detector components using cosmic rays
2020		Commissioned with limited access due to COVID-19
2021	Spring	Commission target+detector components using beam
	Fall	Start the data taking
		\Downarrow Run for two years

• Other physics topics

- $\circ~{\rm TSSA}$ of J/ψ production ... Later talk by C. Ayuso
- Tensor polarization of antiquarks in deuteron ... PRD 94, 054022 (2016)

Conclusions

- Drell-Yan experiments at Fermilab
 - Probe the antiquarks in the proton
 - Utilize the high-intensity proton beam from Main Injector
- SeaQuest/E906 with unpolarized targets
 - Drell-Yan events were detected successfully
 - Large $\bar{d}(x)/\bar{u}(x)$ asymmetry at large x was observed firstly ... Nature 590, 561 (2021)
 - Nuclear effect on antiquarks was observed smaller than quarks
- SpinQuest/E1039 with polarized targets
 - Data taking in 2021-2023 (planned)
 - Will measure Sivers asymmetry of \bar{u} & \bar{d} firstly
- Data analyses of SeaQuest & target+detector commissioning of SpinQuest are ongoing for more physics outcomes!