Non-equilibrium attractor in high temperature QCD plasma

Dekrayat Almaalol

DA, Aleksi Kurkela, Michael Strickland, PRL. 125, (2020)

9th Workshop of the APS Topical Group on Hadronic Physics (virtual) Apr 16, 2021

Kinetic transport theory in ultra-relativistic heavy ion collisions

Formalism

QCD medium at high temperatures: Effective kinetic theory AMY JHEPO301 (2003) 030

Baier, Mueller, Schiff, and Son (2001); J.Berges, M.Heller, A.Mazeliauskas and R.Venugopalan arxiv.2005.12299 (2020); Schlichting, Teaney, Ann. Rev. of Nuc Part. Sci.(2019); Arnold, P. Gorda, T. Iqbal, S. JHEP. 2020, 53

Non-equilibrium dynamics

Non-equilibrium effects and Hydrodynamization

Uncertainties in our understanding of the regime applicability of fluid dynamics

$$\mathrm{Kn} = \frac{\mathrm{microscopic \ scale}}{\mathrm{macroscopic \ scale}} \le 0.5$$

Noronha-Hostler, Noronha, Gyulassy PRC 93(2016)

Schenke, Tribedy, Venugopalan PRL. 108, (2012)

$$\mathrm{Kn} = \frac{\mathrm{microscopic \ scale}}{\mathrm{macroscopic \ scale}} > 1$$

"Unreasonable" success of Hydrodynamics

Signs of breakdown

Careful treatment required for the criteria of fluid dynamics

large far from equilibrium effects

non-hydro modes dominate v_2

nonlinear causality violations!!

Niemi, Denicol arxiv.1404.7327

Kurkela, Wiedemann, Wu, EPJ.C79, (2019)

Plumberg, DA, Dore, Noronha, Noronha-Hostler, 2103.15889(2021)

especially true for small systems!.

The attractor: a better way to think of hydrodynamics

How universal are hydrodynamic attractors?

Attractors in different microscopic theories

Kurkela,van der Schee,Wiedemann,Wu PRL.124.(2020) Decay of non-hydro modes depends on the underlying microscopic theory

Can one access the underlying information?

Non-equilibrium attractor beyond hydrodynamics?

Almaalol, Kurkela, Strickland PRL. 125, (2020)

General moments of the Boltzmann equation

Solving for moments of the Boltzmann equation \Rightarrow reconstruction of f(x, p)

- Momentum discretization method: 2D grid {x_i, p_j} with 250 × 2000 grid points (Kurkela and Zhu PRL 115, 182301 (2015))
- A general moment for $N_C = 3$ in 0 + 1d Bjorken flow

$$\mathcal{M}^{nm}[f] \equiv \int dP \left(p.u
ight)^n \left(p.z
ight)^{2m} f(x,p)$$

M. Strickland, JHEP2018, 128; 1809.01200.

Corresponding equilibrium values for Bose distribution,

$$\mathcal{M}_{eq}^{nm} = \frac{T^{n+2m+2}\Gamma(n+2m+2)\zeta(n+2m+2)}{2\pi^2(2m+1)}$$

- low moments \rightarrow hydrodynamics degrees of freedom
 - $\mathcal{M}^{10} =$ number density
 - $\mathcal{M}^{20} =$ energy density
 - $\mathcal{M}^{01} =$ longitudinal pressure
- Deviations from equilibrium

$$\overline{\mathcal{M}}^{nm}(\tau) \equiv \frac{\mathcal{M}^{nm}(\tau)}{\mathcal{M}^{nm}_{eq}(\tau)}$$

Initial distribution
$$-\frac{d\mathbf{f}_{\mathbf{p}}}{d\tau} = \mathcal{C}_{1\leftrightarrow 2}[\mathbf{f}_{\mathbf{p}}] + \mathcal{C}_{2\leftrightarrow 2}[\mathbf{f}_{\mathbf{p}}] + \mathcal{C}_{\exp}[\mathbf{f}_{\mathbf{p}}].$$

Thermal Romatschke-Strickland

$$\mathrm{f}_{0,\mathrm{RS}}(\mathbf{p}) = f_{\mathrm{Bose}}\Big(\sqrt{\mathbf{p}^2+\xi_0 p_z^2}/\Lambda_0\Big)$$

anisotropy parameter
$$(-1<\xi_0<\infty)$$
 Λ_0 is set by Landau matching

Romatschke, Strickland, PRD68, (2003)

Non-thermal CGC

$$f_{0,CGC}(\mathbf{p}) = \frac{2A}{\lambda} \frac{\tilde{\Lambda}_0}{\sqrt{\mathbf{p}^2 + \xi_0 p_z^2}} \exp^{-\frac{2}{3} \left(\mathbf{p}^2 + \xi_0 \hat{p}_z^2\right) / \tilde{\Lambda}_0^2}$$

The initial scale $\tilde{\Lambda}_0$ is related to the saturation scale $\tilde{\Lambda}_0=\langle p_T\rangle_0\approx 1.8\,Q_s$

A is set by fixing the initial energy density to match an expectation value estimated from a CYM simulation A. Kurkela and Y. Zhu, Phys. Rev. Lett.115, 182301(2015)

T. Lappi, Phys. Lett.B703, 325-330 (2011)

Non-equilibrium QCD attractor at high temperature

DA, Kurkela, Strickland PRL. 125, (2020)

Non-equilibrium evolution becomes insensitive to initial conditions at very early times

Forward attractor

Pressure anisotropy

Non-equilibrium QCD attractor at high temperature

DA, Kurkela, Strickland PRL. 125, (2020)

An attractor for the momentum phase space distribution function

- Pullback attractor
- EKT extends beyond hydro degrees of freedom
- RTA fails to capture the dynamics at high moments

Chemical equilibration?

Quarks?

DA, Mazeliauskas, Strickland. forthcoming

Inclusion of quarks increases anisotropy

- QCD transport of $N_f = 3$ massless fermions.
- \blacktriangleright Quarks are dynamically produced through fusion $gg \to q\bar{q}$ and splitting $g \to q\bar{q}$

▶ An attractor exists for all moments in QCD with $N_f = 3$ quarks

Non-equilibrium effects at Freeze out

Almaalol, Kurkela, Strickland PRL. 125, (2020)

freezeout

• δf corrections at freezeout directly affect the anisotropic flow $v_2(p_T)$

$$E\frac{d^3N_s}{d^3p} = \frac{\nu_s}{(2\pi)^3} \int_{\sigma} (f_s(\tilde{p}) + \delta f)$$

 $\begin{array}{l} \bullet \ \delta f \ \text{can be computed for a particular form of } C[f] \ (\text{Dusling,Moore,Teaney PRC 81, (2008)}) \\ \text{The } \ quadratic \ ansatz \ (\alpha = 0) \\ \end{array} \\ \begin{array}{l} \text{The } \ LPM \ ansatz \ (\alpha = 0.5) \\ \end{array} \end{array}$

$$\frac{\delta f_{(i)}}{f_{\rm eq}(1+f_{\rm eq})} = \frac{3\overline{\Pi}}{16T^2} \left(p^2 - 3p_z^2\right)$$

$$\frac{\delta f_{(ii)}}{f_{\rm eq}(1+f_{\rm eq})} = \frac{16\overline{\Pi}}{21\sqrt{\pi} T^{3/2}} \left(p^{3/2} - \frac{3p_z^2}{\sqrt{p}} \right)$$

The aHydro freeze-out ansatz

$$f(p) = f_{\text{Bose}}(\sqrt{\mathbf{p}^2 + \xi p_z^2}/\Lambda)$$
$$\overline{\mathcal{M}}_{\text{aHydro}}^{nm}(\tau) = 2^{(n+2m-2)/4}(2m+1)\frac{\mathcal{H}^{nm}(\alpha)}{[\mathcal{H}^{20}(\alpha)]^{(n+2m+2)/4}}$$

Insights into the freezeout perscription

(Almaalol,Kurkela,Strickland PRL 125, (2020))

- Disagreement increases for higher moments and for earlier times.
- Good agreement between aHydro ansatz and EKT at all times

τ/τ_R	τ
0.2	0.32 fm/c
0.5	0.86 fm/c
1	1.88 fm/c
2	4.23 fm/c
5	14.1 fm/c
10	38.5 fm/c

For earlier implementation: (Pratt, Torrieri PRC 82(2010) (Weller, Romatchke PLB 774 (2017)

Conclusions

- A non-equilibrium attractor for the phase space distribution of QCD at high temperature EKT
- Ahydro distribution for further improvements in th FO
- Inclusion of quarks: chemical equilibration at high moments ? (DA, A. Mazeliauskas, and M.Strickland, forthcoming)
- Conformal and $0 + 1d \Rightarrow$ transverse dynamcis + non-conformal?

Thank you for your attention!

Hydrodynamics

Fluid dynamics is an effective theory of long wavelength modes

$$G_R^{\mu\nu,\alpha\beta}(x;t) = \langle [T^{\mu\nu}(x,t), \, T^{\alpha\beta}(0,0)] \rangle$$

D. Almaalol - Kent State University - 22

Relaxation time approximation: RTA

J.L. Anderson, H.R. Witting Physica, 74(1974)

Approach to equilibrium set by an equilibration rate.

M. Strickland. JHEP.2018,128 (2018)

Popular approach \Rightarrow direct affect on transport coefficients calculations

From kinetic theory to hydrodynamics

Kinetic based hydrodynamics equations

Moment integral operator

$$\hat{\mathcal{O}}_n g = \mathcal{O}^{\mu_1 \mu_2 \cdots \mu_n}[g] \equiv \int dP \, p^{\mu_1} p^{\mu_2} \cdots p^{\mu_n} \, g(p) n^{th}$$

$$p^{\mu}\partial_{\mu}f_{p} = C[f_{p}]$$

$$\partial_{\mu}I^{\mu\nu_{1}\nu_{2}\cdots\nu_{n}} = \mathcal{C}^{\nu_{1}\nu_{2}\cdots\nu_{n}}$$
$$I^{\mu\nu_{1}\nu_{2}\cdots\nu_{n}} \equiv \int dP \, p^{\mu}p^{\nu_{1}}p^{\nu_{2}}\cdots p^{\nu_{n}}f$$
$$\mathcal{C}^{\nu_{1}\nu_{2}\cdots\nu_{n}} \equiv \int dP \, p^{\nu_{1}}p^{\nu_{2}}\cdots p^{\nu_{n}} \, C[f]$$

Landau Matching

$$\partial_{\mu}n^{\mu} = \mathcal{C} = 0$$

 $\partial_{\mu}T^{\mu\nu} = \mathcal{C}^{\nu} = 0$

Phenomenological implications?

$$\mathcal{C}_{RTA} = rac{u^{\mu}.p^{\mu}}{ au_{\mathrm{R}}} \left[f_{\mathrm{eq}}(p/T) - f_p
ight]$$

$$\partial_{\mu}n^{\mu} = \frac{1}{\tau_{\rm R}} [n_{\rm eq} - n]$$
$$\partial_{\mu}T^{\mu\nu} = \frac{1}{\tau_{\rm R}} [\epsilon_{\rm eq} - \epsilon]$$

Landau Matching

$$\partial_{\mu}n^{\mu} = \mathcal{C}$$
$$\partial_{\mu}T^{\mu\nu} = \mathcal{C}^{\nu}$$

Kasmaei, Strickland PRD 102(2019)

D. Almaalol - Kent State University - 26