



### Probing Nucleon Structure in Drell-Yan Production at COMPASS

April Townsend, on behalf of the COMPASS collaboration APS GHP Meeting 2021 April 14, 2021



#### Outline

- Nucleon structure and Transverse-Momentum Dependent (TMD) Parton Distribution Functions (PDFs)
- COMPASS Experiment and Drell-Yan data-taking
- Azimuthal Asymmetries to study TMD PDFs
- Asymmetry Results from COMPASS Drell-Yan data
- Outlook: Asymmetries in J/ $\psi$  production in pion-proton collisions

# Scattering Experiments Used to Probe Nucleon Substructure

- In the infinite momentum frame of a scattering experiment, nucleon constituents appear to the incoming beam to be free, independent partons
- Each parton carries a fraction of the longitudinal momentum of the nucleon, described by the Bjorken *x* variable



 Non-inclusive scattering processes must be used to probe transverse-momentum dependence

Semi-Inclusive Deep Inelastic Scattering (SIDIS) – Lepton scatters off hadron, one or more outgoing hadrons are measured

**Drell-Yan (DY)** – quark and antiquark annihilate into a virtual photon, which decays into two leptons

#### Transverse Momentum Dependent (TMD) Parton Distribution Functions (PDFs)

Leading twist TMD PDFs describe correlations between the transverse momentum of partons and the polarization of the partons and/or parent nucleon

| →= Nucleon Spin    |              | Nucleon Polarization                        |                                                                               |                                                                                                                          |  |
|--------------------|--------------|---------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| $\bigcirc$         | = Quark Spin | Unpolarized                                 | Longitudinal                                                                  | Transverse                                                                                                               |  |
| Quark Polarization | Unpolarized  | $f_1$ •<br>Number Density                   |                                                                               | $f_{1T}^{\perp} \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Viers}}$                              |  |
|                    | Longitudinal |                                             | $g_1 \xrightarrow{\bullet} - \underbrace{\bullet}_{\text{Helicity}}$          | $g_{1T}^{\perp} \bigoplus_{\text{Worm-Gear T}} - \bigoplus_{\text{Worm-Gear T}}$                                         |  |
|                    | Transverse   | $h_1^{\perp}$ $( )$ — $( )$<br>Boer-Mulders | $h_{1L}^{\perp}$ $\longrightarrow$ — $\bigcirc$ $\longrightarrow$ Worm-Gear L | $\begin{array}{c c} h_1 & & - & \\ \hline \\ Transversity \\ h_{1T}^{\perp} & - & \\ \hline \\ Pretzelosity \end{array}$ |  |

Quark TMD PDFs that can be extracted from the DY and SIDIS cross-sections:

- Boer-Mulders relates spin and transverse momentum of quark in unpolarized nucleon
- Sivers relates transverse momentum of unpolarized quark and transverse polarization of nucleon
- Transversity relates transverse polarization of quark and transverse polarization of nucleon
- Pretzelosity relates transverse momentum of transversely polarized quark and transverse polarization of nucleon

# Experimental studies of TMD PDFs important for verifying TMD QCD framework

- Sivers and Boer-Mulders PDFs: time-reversal odd, predicted to have opposite sign in SIDIS vs DY
- Pretzelosity and Transversity: predicted to be process independent
- COMPASS aims to verify these predictions experimentally



Courtesy: Jan Matousek

#### Outline

- Nucleon structure and Transverse-Momentum Dependent (TMD) Parton Distribution Functions (PDFs)
- COMPASS Experiment and Drell-Yan data-taking
- Azimuthal Asymmetries to study TMD PDFs
- Asymmetry Results from COMPASS Drell-Yan data
- Outlook: Asymmetries in J/ $\psi$  production in pion-proton collisions

# COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS)



- Fixed polarized target experiment in North Area of CERN
- Beam comes from M2 beam line, originating from the SPS COMPASS runs with polarized target:
- SIDIS 160/200 GeV polarized muon beams • d↑ (<sup>6</sup>LiD): 2002-2004, d→ (<sup>6</sup>LiD): 2002-2006 MF3 p↑ (NH<sub>3</sub>): 2007, 2010, p→ (NH<sub>3</sub>): 2007, 2011 • *d*↑ (<sup>6</sup>*LiD*): 2021+ MF<sub>2</sub> HCAL-2 DY – 190 GeV pion beam ECAL-2 • p↑ (NH<sub>3</sub>): 2015, 2018 SM MF RICH-1 SAS SM1 HCAL Hadron Absorber **COMPASS** LAS **Spectrometer**  $\pi^-$  beam (DY Setup) 190 GeV/c

#### **During DY runs:**

- 2 target cells filled with solid state NH<sub>3</sub>
- Protons in each cell polarized in opposite directions
- Polarization flipped periodically to minimize effects of luminosity and acceptance π<sup>-</sup>

# Azimuthal asymmetries extracted to probe TMD PDFs

### Single-polarized DY Cross-section (at leading twist) in terms of azimuthal asymmetries:

$$\frac{d\sigma}{d^4q \, d\Omega} = \frac{\alpha^2}{Fq^2} \hat{\sigma}_U \left\{ 1 + D_{[\sin^2\theta_{CS}]} A_U^{\cos(2\phi_{CS})} \cos(2\phi_{CS}) + S_T \left[ A_T^{\sin(\phi_S)} \sin(\phi_S) + D_{[\sin^2\theta_{CS}]} \left( A_T^{\sin(2\phi_{CS} + \phi_S)} \sin(2\phi_{CS} + \phi_S) + A_T^{\sin(2\phi_{CS} - \phi_S)} \sin(2\phi_{CS} - \phi_S) \right) \right]$$

- Unpolarized Asymmetry (UA) :  $A_U^{\cos(2\phi_{CS})} \sim \text{proton Boer-Mulders} \otimes \text{pion Boer-Mulders}$
- Transverse Spin Asymmetries (TSAs):

 $A_T^{\sin(\phi_S)}$  ~ proton Sivers  $\otimes$  pion unpolarized PDF  $A_T^{\sin(2\phi_{CS}+\phi_S)}$ ~ proton Pretzelosity  $\otimes$  pion Boer-Mulders  $A_T^{\sin(2\phi_{CS}-\phi_S)}$ ~ proton Transversity  $\otimes$  pion Boer-Mulders

Note: negative pion-induced DY probes valence u-quark PDFs of the proton



#### Outline

- Nucleon structure and Transverse-Momentum Dependent (TMD) Parton Distribution Functions (PDFs)
- COMPASS Experiment and Drell-Yan data-taking
- Azimuthal Asymmetries to study TMD PDFs
- Asymmetry Results from COMPASS Drell-Yan data
- Outlook: Asymmetries in J/ $\psi$  production in pion-proton collisions

### **Dimuon Mass Distribution**

- Data contains dimuons from DY scattering as well as meson decay and combinatorial background
- 'High mass' region used for DY analysis:
  - 4.3 GeV/ $c^2 < M_{\mu\mu} < 8.5$  GeV/ $c^2$
  - ~96% pure
- J/ψ mass region
   (used in ongoing J/ψ analysis):
  - > 90% purity



#### **COMPASS DY Boer-Mulders result**



- Unpolarized asymmetry  $A_U^{\cos(2\phi_{CS})} = \nu/2$
- Experimental results hint that there may be non-zero Boer-Mulders effects

#### **COMPASS DY TSA Results**



# COMPASS Sivers TSA measurements favors sign change prediction

COMPASS collected SIDIS and DY data with the same apparatus, in essentially the same kinematic region



Note: Angles defined differently in SIDIS and DY measurements: same sign Sivers asymmetry -> Sivers PDF of opposite sign

#### Outline

- Nucleon structure and Transverse-Momentum Dependent (TMD) Parton Distribution Functions (PDFs)
- COMPASS Experiment and Drell-Yan data-taking
- Azimuthal Asymmetries to study TMD PDFs
- Asymmetry Results from COMPASS Drell-Yan data
- Outlook: Asymmetries in J/ $\psi$  production in pion-proton collisions

### J/ $\psi$ production in pion-proton collisions

#### Two leading order $J/\psi$ production processes



Quark-antiquark  $(q\bar{q})$  annihilation

- Sensitive to quark TMDs
- Can complement DY results



#### Gluon-gluon (gg) fusion

• Sensitive to gluon TMDs

### Further gluon Sivers studies would be valuable

- COMPASS measured a gluon Sivers effect two sigma below zero in photon-gluon fusion
- COMPASS measured a similar size effect in exclusive J/ $\psi$  leptoproduction, but the result at lower z is compatible with zero
- PHENIX found a gluon Sivers effect compatible with zero in  $\pi^0$  production in pp collisions
- The two experiments cover different kinematic regions, and the theory related to the gluon Sivers function is complicated



# TSAs in J/ $\psi$ production may be used to determine which production mechanism is dominant

- Anselmino et.al. predict a large Sivers asymmetry in COMPASS J/ψ production M. Anselmino, V. Barone, M. Boglione. *Phys. Lett. B*, 770(2017), 302-306.
- Calculation assumed only  $q \overline{q}$  annihilation and no feed-down  ${\rm J}/\psi$
- Recent studies by Chang et.al. suggest that gg fusion dominates at COMPASS
   W. Chang, J. Peng, S. Platchkov, T. Sawada, *Phys. Rev. D*, 102(2020), 054024
- Comparison of experiment and theory can illuminate further which production mechanism dominates at COMPASS kinematics



### Summary and Outlook

- TMD PDFs describe transverse-momentum dependent behavior of partons inside a nucleon
- Azimuthal asymmetries in COMPASS Drell-Yan data give access to quark Sivers, Pretzelosity, Transversity, and Boer-Mulders TMD PDFs
- From ~70% of total DY data sample:
  - Hint of a non-zero Boer-Mulders effect
  - Sivers TSA results favor sign change prediction
- Ongoing analysis with full data sample should improve the statistical precision of results
- Ongoing TSA extraction from J/ $\psi$  production in pion-proton collisions should offer insight about the J/ $\psi$  production mechanism and information about the gluon Sivers function





## **Backup Slides**

| C             | ) → = Nucleon Spin | Nucleon Polarization                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |
|---------------|--------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|               | = Quark Spin       | Unpolarized                                         | Longitudinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Transverse                                                                              |
| Lo            | Unpolarized        | $f_1$ •<br>Number Density                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f_{1T}^{\perp} \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{V}}$ |
| Polarizati    | Longitudinal       |                                                     | $g_1 \longrightarrow - \bigoplus$<br>Helicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $g_{1T}^{\perp} \bigoplus_{\text{Worm-Gear T}} \bullet$                                 |
| Ouark         | Transverse         | $h_1^{\perp}$ $\bullet$ - $\bullet$<br>Boer-Mulders | $h_{1L}^{\perp}$ $\swarrow$ — $\bigcirc$ $\bigcirc$ — $\bigcirc$ $\bigcirc$ $\bigcirc$ — $\bigcirc$ | $h_1$ —<br>Transversity $h_{1T}^{\perp}$ — $h_{1T}^{\perp}$                             |
| April 14, 202 |                    | Boer-Mulders                                        | Worm-Gear L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $h_{1T}^{\perp}$ $h_{1T}^{\perp}$ $h_{1T}^{\perp}$                                      |

### COMPASS setup during DY runs (2015, 2018)



#### COMPASS Real and Monte-Carlo (MC) Data Production on Supercomputers

- Digital raw data reconstructed into physics quantities using COMPASS Reconstruction and Analysis Libraries (CORAL)
  - 2 PB of raw data from 2015/2018 DY runs
- MC simulation 'raw data' also reconstructed with CORAL and used to study detector performance
- High performance parallel computing resources needed for real and MC data production
- Utilize allocations on NSF-funded Blue Waters and now Frontera





#### **Unbinned Maximum Likelihood Method of TSA Extraction**

Maximize likelihood function

Minimize negative log likelihood function

$$\mathcal{L}(x,\vec{A}) = \prod_{i=1}^{N} f(x_i,\vec{A}) \longrightarrow -\ln \mathcal{L}(x,\vec{A}) = -\sum_{i=1}^{N} \ln f(x_i,\vec{A})$$

Probability distribution function (pdf) for target cell *i* with polarization  $\pm$ :

$$f_{i\pm}(\phi_S, \phi, \theta, \vec{A}) = 1 + D_{[\sin(2\theta)]} \overline{A_U^{\cos(\phi)}} \cos(\phi) + D_{[\sin^2(\theta)]} \overline{A_U^{\cos(2\phi)}} \cos(2\phi)$$
  

$$\pm |S_T| \overline{A_T^{\sin(\phi_S)}} \sin(\phi_S)$$
  

$$+ D_{[\sin^2(\theta)]} \left( \overline{A_T^{\sin(2\phi+\phi_S)}} \sin(2\phi+\phi_S) + \overline{A_T^{\sin(2\phi-\phi_S)}} \sin(2\phi-\phi_S) \right)$$
  

$$+ D_{[\sin(2\theta)]} \left( \overline{A_T^{\sin(\phi+\phi_S)}} \sin(\phi+\phi_S) + \overline{A_T^{\sin(\phi-\phi_S)}} \sin(\phi-\phi_S) \right) \right]$$

11 unknowns: 2 unpolarized asymmetries, 5 TSAs, 4 normalization factors (1 per pdf)

#### **Unbinned Maximum Likelihood Method of TSA Extraction**

Extended UBML: add a Poissonian term to the likelihood function:

$$-\ln \mathcal{L}(\vec{A}) = \sum_{(i=1,2)} \sum_{(\text{sign}=+,-)} \left[ I_{i,\text{sign}} - \sum_{n=1}^{N_{i,\text{sign}}} \ln \left( C_{i,\text{sign}} f_{i,\text{sign}}(\phi_S,\phi,\theta,\vec{A}) \right) \right]$$
$$I_{i,\text{sign}} = \int C_{i,\text{sign}} f_{i,\text{sign}}(\phi_S,\phi,\theta) \, \mathrm{d}\phi_S \, \mathrm{d}\phi \, \mathrm{d}\theta = 8\pi^2 C_{i,\text{sign}}$$

Reweight each term to account for finite statistics

$$-\ln \mathcal{L}(\vec{A}) = \sum_{(i=1,2)} \sum_{(\text{sign}=+,-)} \left[ \frac{\bar{N}}{N_{i,\text{sign}}} \left( 8\pi^2 C_{i,\text{sign}} - \sum_{n=1}^{N_{i,\text{sign}}} \ln \left( C_{i,\text{sign}} f_{i,\text{sign}}(\phi_S,\phi,\theta,\vec{A}) \right) \right) \right]$$

#### Left-right asymmetry $A_N$ also related to Sivers function

• Another SSA is the left-right asymmetry:

$$A_{lr} = \frac{1}{|S_T|} \frac{\sigma_l - \sigma_r}{\sigma_l + \sigma_r}$$

• Analyzing power  $A_N$  is related to the Sivers function in a similar way to  $A_T^{\sin(\phi_S)}$ :

$$A_N = \frac{\pi}{2} A_{lr}$$

