Production and polarization of direct J / ψ to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ in the improved color evaporation model in collinear factorization

Vincent Cheung

Nuclear Data and Theory Group, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics (Nuclear Theory) under contract number DE-SC-0004014.

Apr 13, 2021

Overview

(1) Introduction

- Quarkonium
- Polarization
- The Polarization Puzzle
(2) ICEM Approach
- Unpolarized Yield
- Polarization Parameters
- Invariant Polarization Parameters
(3) Conclusion and Future

Quarkonium Families

Quarkonia: bound states of $c \bar{c}$ or $b \bar{b}$

- combination of two spin $1 / 2$ particles with orbital angular momentum \rightarrow different spin states ${ }^{2 S+1} L_{J}$
- all color singlets ${ }^{2 S+1} L_{J}{ }^{[1]}$
- produced in $h h, \gamma \mathrm{p}, \gamma \gamma$, and $\mathrm{e}^{+} \mathrm{e}^{-}$
- S states below the $H \bar{H}(H=D, B)$ threshold decay electromagnetically into $\ell^{+} \ell^{-}$

Polarization and Angular Distribution

$$
\begin{gathered}
|\psi\rangle=a_{-1}\left|J_{z}=-1\right\rangle+a_{0}\left|J_{z}=0\right\rangle+a_{+1}\left|J_{z}=+1\right\rangle, \quad \sum\left|a_{J_{z}}\right|^{2}=1 \\
\lambda_{\vartheta}=\frac{1-3\left|a_{0}\right|^{2}}{1+\left|a_{0}\right|^{2}}, \quad \lambda_{\varphi}=\frac{2 \operatorname{Re}\left[a_{+} a_{-1}^{*}\right]}{1+\left|a_{0}\right|^{2}}, \quad \lambda_{\vartheta \varphi}=\frac{\sqrt{2} \operatorname{Re}\left[a_{0}^{*}\left(a_{+}-a_{-}\right)\right]}{1+\left|a_{0}\right|^{2}} \\
\frac{d \sigma}{d \Omega} \propto \frac{1}{3+\lambda_{\vartheta}}\left[1+\lambda_{\vartheta} \cos ^{2} \vartheta+\lambda_{\varphi} \sin ^{2} \vartheta \cos (2 \varphi)+\lambda_{\vartheta \varphi} \sin (2 \vartheta) \cos \varphi\right]
\end{gathered}
$$

- For a single elementary process, the polarized-to-total cross section can be calculated as $a J_{z}$'s. Combinations of $a J_{z}$'s gives different angular distributions.
- However, there is no combination that would give $\lambda_{\vartheta}=\lambda_{\varphi}=\lambda_{\vartheta \varphi}=0$.
- An unpolarized production can only be described by a mixture of sub-processes or
 randomization modeling.

Polarization Measurement

- There are three commonly used choices for the z-axis, namely $z_{H X}$ (helicity), $z_{C S}$ (Collins-Soper), and $z_{G J}$ (Gottfried-Jackson)
- ϑ is defined as the angle between the z-axis and the direction of travel for the ℓ^{+}in the quarkonium rest frame

Extracting Polarization

$$
\frac{d \sigma}{d \Omega} \propto \frac{1}{3+\lambda_{\vartheta}}\left[1+\lambda_{\vartheta} \cos ^{2} \vartheta+\lambda_{\varphi} \sin ^{2} \vartheta \cos (2 \varphi)+\lambda_{\vartheta \varphi} \sin (2 \vartheta) \cos \varphi\right]
$$

- Polarization parameters can be obtained by fitting the angular spectra as a function of ϑ and φ
- One can write $\varphi_{\vartheta}=\varphi-\frac{\pi}{2} \mp \frac{\pi}{4}$ for $\cos \vartheta \lessgtr 0$, then ${ }^{[1]}$
- $\frac{d \sigma}{d \varphi_{\vartheta}} \propto 1+\frac{\sqrt{2} \lambda_{\vartheta \varphi}}{3+\lambda_{\vartheta}} \cos \varphi_{\vartheta}$

${ }^{1}$ I. Abt et al. (HERA-B Collaboration), Eur. Phys. J. C 60, 517 (2009).

Importance of Polarization

- Polarization predictions are strong tests of production models
- Detector acceptance depends on polarization hypothesis
- Understanding polarization helps narrow systematic uncertainties

${ }^{2}$ R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 71, 1645 (2011).
${ }^{3}$ G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B 850, 387 (2011).

Quarkonium Polarization Puzzle

Quarkonium Polarization Puzzle

- mechanism of producing quarkonium has not yet been understood
- non-relativistic QCD (NRQCD), a common method to calculate quarkonium production, has difficulties describing yield and polarization simultaneously with a low- p_{T} cut

Non Relativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

- e.g. for $J / \psi, \sigma_{J / \psi}=\sum_{n} \sigma_{c \bar{c}[n]}\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$
- both color singlet term $n={ }^{3} S_{1}^{[1]}$ and color octet terms ${ }^{1} S_{0}^{[8]},{ }^{3} S_{1}^{[8]}$, and ${ }^{3} P_{j}^{[8]}$ contributes to the production
- mixing of Long Distance Matrix Elements (LDMEs $\left.=\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle\right)$ are determined by fitting to data, usually p_{T} distributions above some p_{T} cut

Polarization Puzzle ${ }^{[4]}$

${ }^{4}$ N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)

The Improved Color Evaporation Model (ICEM)

[Ma, Vogt (PRD 94, 114029 (2016).)]
$\sigma=\left.F_{\mathcal{Q}} \sum_{i, j} \int_{M_{\psi}}^{2 m_{H}} d M \int d x_{i} d x_{j} f_{i}\left(x_{i}, \mu_{F}\right) f_{j}\left(x_{j}, \mu_{F}\right) d \hat{\sigma}_{i j \rightarrow c \bar{c}+X}\left(p_{c \bar{c}}, \mu_{R}\right)\right|_{p_{c \bar{c}}=\frac{M}{M_{\psi}} p_{\psi}}$,
where M_{ψ} is the mass of the charmonium state, ψ.

- all Quarkonium states are treated like $Q \bar{Q}(Q=c, b)$ below $H \bar{H}$ ($H=D, B$) threshold
- all diagrams for $Q \bar{Q}$ production included, independent of color
- able to describe relative production of $\psi(2 S)$ to J / ψ
- fewer parameters than NRQCD (one $F_{\mathcal{Q}}$ for each Quarkonium state)
- distinction between the momentum of the $c \bar{c}$ pair and that of charmonium so that the p_{T} spectra will be softer and thus may explain the high p_{T} data better
- $F_{\mathcal{Q}}$ is fixed by comparison of NLO calculation of $\sigma_{\mathcal{Q}}^{C E M}$ to \sqrt{s} for J / ψ and $\Upsilon, \sigma\left(x_{F}>0\right)$ and $B d \sigma /\left.d y\right|_{y=0}$ for $J / \psi, B d \sigma /\left.d y\right|_{y=0}$ for Υ

Collinear Polarized ICEM at $\mathcal{O}\left(\alpha_{s}^{3}\right)^{[5]}$

Production distribution

$$
\frac{d^{2} \sigma}{d p_{T} d y}=F_{\mathcal{Q}} \sum_{i, j=\{q, \bar{q}, g\}} \int_{M_{\mathcal{Q}}}^{2 m_{H}} d M_{\psi} \int d \hat{s} d x_{1} d x_{2} f_{i / p}\left(x_{1}, \mu^{2}\right) f_{j / p}\left(x_{2}, \mu^{2}\right) d \hat{\sigma}_{i j \rightarrow c \bar{c}+X},
$$

- We consider all 16 diagrams from $\mathrm{gg} \rightarrow \mathrm{c} \overline{\mathrm{c} g}, 5(+5)$ from $\mathrm{gq}(\bar{q}) \rightarrow c \bar{c} \mathrm{q}(\bar{q})$, and 5 from $q \bar{q} \rightarrow c \bar{c} g$ with the projection operator applied at the diagram level.
- The $c \bar{c}$ produced are the proto- J / ψ before hardonization.
- We used the CT14 PDFs in our calculations.
- k_{T}-smearing is applied to the initial state partons to provide better description at low p_{T}
- First p_{T}-dependent polarization results using collinear factorization
- $1.18<m_{c}<1.36 \mathrm{GeV}, \mu_{F} / m_{T}=2.1_{-0.85}^{+2.55}, \mu_{R} / m_{T}=1.6_{-0.12}^{+0.11}$
- same set of variations used in MV [2016] and NVF [PRC 87, 014908 (2013)]
${ }^{5}$ V. Cheung and R. Vogt, submitted.

Collinear ICEM Unpolarized Cross Sections ${ }^{[5]}$

- k_{T}-smearing gives a small kick $<k_{T}^{2}>\sim 1 \mathrm{GeV}^{2}$ to the inital state parton.
- The uncertainty band ${ }^{[5]}$ is constructed by varying the charm quark mass, factorization scale, and renormalization scale.
- We find agreement with the p_{T}-distribution measured by the $\mathrm{LHCb}{ }^{[6]}$.

[^0]
Polarization Parameters in Collinear ICEM ${ }^{[5]}$

- We find agreement with LHCb data ${ }^{[6]}$ at small and moderate p_{T}.
- Difference between the prediction and experimental results in high p_{T} is frame dependent.

Invariant Polarization Parameter in Collinear ICEM ${ }^{[5]}$

$$
\operatorname{ICEM}\left(p_{T}=12 \mathrm{GeV}\right)
$$

$$
\text { LHCb data }\left(10<p_{T}<15 \mathrm{GeV}\right)
$$

- The frame-invariant polarization parameter $\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}}$
- Comparing the frame-invariant polarization paremeter removes frame-induced kinematic dependencies
- We find agreement with the invariant polarization measured by the LHCb ${ }^{[6]}$.

Conclusion and Future

(I)CEM

- Less rigorous
- Fewer fit parameters
- Applied extensively to only hadroproduction (so far)

NRQCD

- More rigorous
- More fit parameters
- Applied to all collision systems

In this talk, I

- outlined the quarkonium polarization puzzle
- showed the latest attempt to solve the polarization puzzle in the ICEM

In the future, we

- anticpate the feed down from P states can explain the discrepancies in high p_{T}.
- will move from hadroproduction to other collision systems.

Backup Slides

$C G C+N R Q C D^{[7]}$

- is a solution to the polarization puzzle where gluon distribution is calculated using CGC and the conversion of $Q \bar{Q}$ is described by NRQCD formulation
- able to describe all polarization parameters for $p_{T}<15 \mathrm{GeV}$

${ }^{7}$ Y. Q. Ma, T. Stebel, R. Venugopalan, JHEP12 (2018) 057.

[^0]: ${ }^{6}$ R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 73, 2631 (2013).

