Improved α_s determination from hadronic decays of EW bosons at N³LO accuracy

9th APS GHP Hadronic Physics Workshop

(Sacramento/Virtual), 13–16 April 2021

David d'Enterria CERN

Based mostly on: D. d'Enterria,V. Jacobsen "Improved strong coupling determinations from hadronic decays of electroweak bosons at N³LO accuracy", https://arxiv.org/abs/2005.04545 [hep-ph]

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter of QCD in the $m_q \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1} \Lambda \sim 0.2$ GeV

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter of QCD in the $m_q \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1} \Lambda \sim 0.2 \text{ GeV}$

+ Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{_{\rm F}} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{_{\rm S}} \sim 10^{-3}$

Importance of the strong coupling α_s

Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

					Msbar mass error budget (from threshold scan)			\frown
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-low})^t$	^{theo} $(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9	\Rightarrow improvement	t in $lpha_s$ crucial		$\delta \alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c	Quantity	FCC-ee fu	iture param.unc.	Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ \pm	2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ \pm	0 %	$R_b [10^{-5}]$	6	< 1	$\delta \alpha_s$
					R_{ℓ} [10 ⁻³]	1	1.3	$\delta \alpha_s$

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

World α_s determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

APS GHP Workshop, April 2021

Future e⁺e⁻ colliders under discussion

FCC-ee features lumis a few times larger than other machines over 90–240 GeV
 Unparalleled Z, W, jets, τ,... data sets: Negligible α_s stat. uncertainties

Ultra-precise W, Z, top physics at FCC-ee

■ Unparalleled syst. uncert.: $\delta E_{cm}(Z,W) \sim 0.1, 0.3 \text{ MeV} \rightarrow \text{Very precise } \Gamma_{W,Z}$ APS GHP Workshop, April 2021

Hadronic Z, W decay pseudo-observables

Z & W observables theoretically known at N³LO accuracy:

• The W and Z hadronic widths :

$$\Gamma_{W,Z}^{had}(Q) = \Gamma_{W,Z}^{Born} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{EW} + \delta_{mix} + \delta_{np} \right)$$

96.60%
3.78%
-0.35%
-0.05%

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathrm{R}_{\mathrm{W},\mathrm{Z}}(Q) = \frac{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{lep}}(Q)} = \mathrm{R}_{\mathrm{W},\mathrm{Z}}^{\mathrm{EW}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\mathrm{Z}}^{\mathrm{had}} = rac{12\pi}{m_{\mathrm{Z}}} \cdot rac{\Gamma_{\mathrm{Z}}^{\mathrm{e}}\Gamma_{\mathrm{Z}}^{\mathrm{had}}}{(\Gamma_{\mathrm{Z}}^{\mathrm{tot}})^2}$$

TH uncertainties: (α^2 , α^3 included for Z): ±0.015–0.03% (Z) ±0.015–0.04% (W)

DdE, Jacobsen:

arXiv:2005.04545

Parametric uncerts.: $(\alpha_s, m_{Z,W}; V_{cs,ud})$: $\pm 0.01-0.03\%$ (Z) $\pm 1.1-1.7\%$ (W) $\pm 0.03\%$ (W, CKM unit)

Measured at LEP with ±0.1–0.3% (Z), ±0.9–2% (W) exp. uncertainties:

	theory			experiment			
	previous	new (this work)	change	previous [6]	new [20, 2	1]	change
$\Gamma_{\rm Z}^{\rm tot} \ ({\rm MeV})$	$2494.2\pm0.8_{\rm th}$	$4.2 \pm 0.8_{\rm th}$ $2495.2 \pm 0.6_{\rm par} \pm 0.4_{\rm th}$		2495.2 ± 2.3	2495.5 ± 2.3		+0.012%
Rz	$20.733 \pm 0.007_{\rm th}$	$20.750 \pm 0.006_{\mathrm{par}} \pm 0.006_{\mathrm{th}}$	+0.08%	20.767 ± 0.025	20.7666 ± 0.0247		-0.040%
$\sigma_{ m Z}^{ m had}~({ m pb})$	$41490\pm6_{\rm th}$	$41494 \pm 5_{ m par} \pm 6_{ m th}$	+0.01%	41540 ± 37	41480.2 ± 3	8 <mark>2.5</mark>	-0.144%
W boson	GFITTER 2.2 (NNLO)		this work (N^3LO)			exp	eriment
observables		(exp. CKM)	(exp. CKM)		nit.)		
$\Gamma_{\rm W}^{\rm had}$ (MeV)	_	$1440.3 \pm 23.9_{par} \pm$	$1440.3 \pm 23.9_{ m par} \pm 0.2_{ m th}$		$1410.2\pm 0.8_{\rm par}\pm 0.2_{\rm th}$		05 ± 29
$\Gamma_{\rm W}^{\rm tot} \ ({\rm MeV})$	$2091.8\pm1.0_{\rm par}$	$2117.9 \pm 23.9_{\rm par} \pm$	$2117.9 \pm 23.9_{ m par} \pm 0.7_{ m th}$		$2087.9 \pm 1.0_{\rm par} \pm 0.7_{\rm th}$		85 ± 42
Rw	_	$2.1256 \pm 0.0353_{ m par} \pm$	$\frac{0.0008_{\rm th}}{2.0812 \pm 0.0007_{\rm par} \pm 0.0007_{\rm par}}$		$ar \pm 0.0008$ th	2.06	9 ± 0.019

Recent update of LEP luminosity bias(*) change the Z values by few permil

(*) Voutsinas et al. arXiv:1908.01704, Janot et al. arXiv:1912.02067

APS GHP Workshop, April 2021

David d'Enterria (CERN)

α_s from hadronic Z decays (today)

α_s from hadronic Z decays (FCC-ee)

QCD coupling extracted from:

(i) Combined fit of 3 Z pseudo-observ: (ii) Full SM fit (with α_s free parameter)

♦ <u>FCC-ee</u>:

- Huge Z pole stats. ($\times 10^5$ LEP):
- Exquisite systematic/parametric precision (stat. uncert. negligible):

$$\begin{split} \Delta \mathbf{R}_{\mathbf{Z}} &= 10^{-3}, \quad \mathbf{R}_{\mathbf{Z}} = 20.7500 \pm 0.0010 \\ \Delta \Gamma_{\mathbf{Z}}^{\text{tot}} &= 0.1 \text{ MeV}, \quad \Gamma_{\mathbf{Z}}^{\text{tot}} = 2495.2 \pm 0.1 \text{ MeV} \\ \underline{\Delta \sigma_{\mathbf{Z}}^{\text{had}}} &= 4.0 \text{ pb}, \quad \sigma_{\mathbf{Z}}^{\text{had}} = 41\,494 \pm 4 \text{ pb} \\ \hline \Delta m_{\mathbf{Z}} &= 0.1 \text{ MeV}, \quad m_{\mathbf{Z}} = 91.18760 \pm 0.00001 \text{ GeV} \\ \Delta \alpha &= 3 \cdot 10^{-5}, \quad \Delta \alpha_{\text{had}}^{(5)}(m_{\mathbf{Z}}) = 0.0275300 \pm 0.0000009 \end{split}$$

- TH uncert. to be reduced by $\times 4$ computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
- 10 times better precision than today: $\delta \alpha_s / \alpha_s \sim \pm 0.2\%$ (exp+th), $\pm 0.1\%$ (exp) Strong (B)SM consistency test.

APS	GHP	Workshop	, April	202
-----	-----	----------	---------	-----

Z boson	$lpha_S(m_{ m Z})$	uncertainties			
observable	extraction	exp.	param.	theor.	
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008	
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008	
All combined (FCC-ee)	0.12030 ± 0.00026	±0.000 <mark>13</mark>	± 0.00005	± 0.000 22	
Global SM fit (FCC-ee)	0.12020 ± 0.00026	± 0.000 13	± 0.00005	± 0.000 22	

α_s from hadronic W decays (today)

• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties			
observables	extraction	exp.	param.	theor.	
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} \ ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	$\pm 0.0 \frac{47}{47}$	(± 0.0014)	
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} \; ({ m CKM \; unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)	
$\Gamma_{\rm W}^{\rm tot}$, $R_{\rm W}$ (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019	

- Very imprecise extraction:
- Large propagated parametric uncert. from poor V_{cs} exp. precision (±2%):
 QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, R_w (0.9–2%): QCD extracted with ~27% precision
- Propagated TH uncertainty much smaller today: ~1.5%

α_s from hadronic W decays (FCC-ee)

• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$		uncertainties	
observables	extraction	exp.	param.	theor.
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} ({ m CKM unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)
$\Gamma_{\rm W}^{\rm tot}$, R _W (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

FCC-ee extraction:

- Huge W pole stats. ($\times 10^4$ LEP-2).
- Exquisite syst./parametric precision:

 $\Gamma_{\rm W}^{\rm tot}=2088.0\pm1.2~{\rm MeV}$

 $R_{\rm W} = 2.08000 \pm 0.00008$

 $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

- $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$ mesons
- TH uncertainty to be reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

Summary: α_s from hadronic EW bosons decays

- World-average QCD coupling at N^{2,3}LO today:
 - Determined from 7 observables with combined ±0.85% uncertainty: Least well-known gauge coupling.
 - Impacts all LHC QCD x-sections & decays.
 - Role beyond SM: GUT, EWK vacuum stability, New coloured sectors?
- **Uncerts.** for e^+e^- extractions today:
- $-\tau$ decays: ±1.5% (mostly non-pQCD)
- Shapes, jets: ±2.6% (mostly non-pQCD)
- Z pseudo-observ.: ±2.5% (mostly exp.)
- New Z, W extractions:
 - Z boson: New fit with high-order
 EW corrections + updated LEP data: ±2.3%, ±0.6%, (exp., th.) uncerts.
 - W boson: New N³LO fit to Γ_{w} , R_w ~47%,~27% (param., exp.) uncerts.

Future: 0.1% uncertainty possible with a machine like FCC-e⁺e⁻

Possible detector improvements to bring propagated syst. uncert. on W,Z pseudo-observ. below 0.1%

Backup slides

FCC-ee (91 GeV) syst. uncertainties

• FCC-ee goal: Via Z line-shape scan, determine Z parameters to precisions:

 $\delta M_z = 100 \text{ keV}$; $\delta \Gamma_z = 25 \text{ keV}$

Plot shows relative change in cross section across Z resonance for parameter variation of this size

- Z width measurement most demanding: Need relative normalisation to about 10⁻⁵
 Need statistics of order 10¹⁰
 Need statistics of order 10¹⁰
 - Need careful control of energy dependent effects

FCC-ee Luminosity, Operation, Data samples

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	and above
√s (GeV)	88, 9	1, 94	157, 163	240	340 - 350	365
Lumi/IP (10 ³⁴ cm ⁻² 5 ⁻¹)	100	200	25	7	0.8	1.4
🖉 Lumi/year (2 IP) 🖉	24 ab-1	48 ab-1	6 ab 1	1.7 ab-1	0.2 ab-1	0.34 ab-1
Physics goal	150	ab¹	10 ab-1	5 ab⁺¹	0.2 ab-1	1.5 ab-1
Run time (year)	2	2	2	3	1	4

α_s from hadronic τ -lepton decays

• Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

- Experimentally: R_{τ,exp} = 3.4697 ± 0.0080 (±0.23%)
- Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (Λ/m_τ)² ~2%, yield different results.

Uncertainty slightly increased: $2013 (\pm 1.3\%) \rightarrow 2019 (\pm 1.5\%)$

Future :

- TH: Better understanding of FOPT vs CIPT differences.
- Better spectral functions needed (high stats & better precision):
 B-factories (BELLE-II)?
- High-stats: $\mathcal{O}(10^{11})$ from $Z \rightarrow \tau\tau$ at FCC-ee(90) : $\delta \alpha_s / \alpha_s << 1\%$

α_s from e⁺e⁻ event shapes & jet rates (today)

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- Experimentally (LEP): Thrust, C-parameter, jet shapes n-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

Wide span of TH extractions...

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

α_{a} from e⁺e⁻ event shapes & jet rates (FCC-ee)

 $C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy. $\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{n_i}|}$
- Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

APS GHP Workshop, April 2021

OPAL 3 jet event

α_s from lattice QCD

Comparison of short-distance quantities (Wilson loops, q static potential, vacuum polariz.,...) computed at NNLO in pQCD, to lattice QCD "data":

 $K^{\rm NP} = K^{\rm PT} = \sum_{i=0}^{n} c_i \alpha_s^i$

 Currently, it's extraction with smallest uncertainties: ±1% (lattice spacing & statistics).

Extracted value depends on observables:

Uncertainty increased: 2013 (±0.4%) → 2017 (±1.0%)

Future prospects:

- Uncertainty in α_s could be halved with (much) better numerical data.
- Reaching ±0.1% requires 4th-loop perturbation theory (~10 years?)

[FLAG Collab. http://itpwiki.unibe.ch/flag]

Other α_s extractions (not yet in world average)

There are few other classes of e⁺e⁻ observables, computed today at lower accuracy (NLO, NNLO*), that can be used to extract the QCD coupling:

α_s from photon QCD structure function (NLO)

arXiv:0907.2782

Visius

 $L_{int} = 20 \text{ fb}^{\dagger}$

David d'Enterria (CERN)

Q² [GeV²

 10^{3}

α_s extractions from jet fragmentation (NLO,NNLO*)

(full-NNLO corrections missing)

Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in e^+e^- and DIS data fitted to the NNLO^{*}+NNLL predictions. The obtained \mathcal{K}_{ch} normalization constant, individual NNLO^{*} $\alpha_s(m_z)$ values, and the goodness-of-fit per degree-of-freedom χ^2/ndf .

APS GHP Workshop, April 2021

David d'Enterria (CERN)