Electron-scattering constraints for neutrino interactions and oscillations

A.Papadopoulou (<u>apapadop@mit.edu</u>)

For the \mathcal{CAV} collaboration

Neutrino Oscillation Experiments

Neutrino Oscillation Experiments

Before any oscillation parameter extraction, need for good handle of

- cross section predictions for signal & background events
- accuracy of energy reconstruction E_{rec}

$$N(E_{rec}) \sim \Phi(L, E_{\nu, true}) \sigma(E_{\nu, true}) \epsilon(E_{\nu, true}) P(\nu_{\alpha} \rightarrow \nu_{\beta})$$

PHYSICS PROCESS

Improving Modeling Input

Improving Modeling Input

Today

• ν near detector constraints CAV class • External Data • Modelling development + Data - SuSav2 (Total) -QE -MEC -RES-DIS JeV JeV •••G2018 E_{beam} 0.6 0.8 1.2 1.4 $C(e,e')_{0\pi} E_{QE} [GeV]$

And a Wealth of New Results...

Why electrons?

• Very similar interactions

Vector vs Vector + Axial-Vector

- Nuclear & FSI effects practically identical
- Monoenergetic electron beams
- \rightarrow Benchmark ν event generators

e4v Data-Mining W/ CLAS6

- Large acceptance @ $\theta_e > 15^\circ$
- Charged particle threshold similar to v tracking detectors
- Energies: 1, 2 & 4 GeV
- Targets: ⁴He, ¹²C, ⁵⁶Fe

Energy Reconstruction

S

Cherenkov detectors Assuming QE interaction Using lepton kinematics $E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$

Tracking detectors Calorimetric sum Using all detected particles $E_{cal} = E_l + T_p + \epsilon$

nucleon separation energy $\epsilon \sim 20 \text{ MeV}$

Strategy:

Select "clean" (e,e'p) events: 1 proton (> 300 MeV/c) No π[±] (> 150 MeV/c)

<u>Objectives</u>

Study ν energy reconstruction Benchmark ν event generators Report absolute cross sections

Cross Section Extraction

- Subtract non-(e,e'p) backgrounds
- Scale counts by luminosity
- Correct for (e,e'p) acceptance & radiation

Systematic uncertainties on each correction above & difference between detector sectors

Hall A@ JLab H(e,e'p) @ 4.32 GeV

Absolute QE-Like C(e,e'p) Cross Sections

QE Energy Reconstruction

- Relevant for T2K
- Overestimation of QE peak & RES tail

Transverse Missing Momentum

Energy Reconstruction In P_T Slices

Detected Hadron Multiplicities

e4v Wrap Up

- Benchmarking v models against wide phase-space electron data
- Data/MC disagreements even for QE-like topologies
- Need for more electron scattering datasets in relevant phase-space to constrain ν models

Potential impact on DUNE

Coming Fall '21: New Data W/ CLAS12

- \bullet Acceptance down to $5^{\rm o}$
- x10 luminosity $[10^{35} \text{ cm}^{-2} \text{ s}^{-1}]$
- Targets ²D, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ¹²⁰Sn
- 1 7 GeV beam energies
- Better neutron & gamma detection

Thank you !

eav + c

[come join us! :]

-

Thank you !

Joint theory & experimental effort

- New data with CLAS12 / ...
- More interaction channels (1p1 π , 1 π , NN, ...)
- Tuning efforts
- Implications on v oscillation studies

eav +

[come join us! :]

Thank you !

Backup Slides

New Directions in Neutrino-Nucleus Scattering (NDNN) NUSTEC Workshop

32

Inclusive e4v Cross Section

33

Inclusive Electron Scattering C

Inclusive Electron Scattering C & Fe

Inclusive Electron Scattering Ar

arXiv:2009.07228 [nucl-th]
GENIE Reproduces Inclusive <u>e & v</u> Data

arXiv:2009.07228 [nucl-th]

PRL 123, 131801 (2019)

Similar ν & e Distributions in Exclusive Reaction

1 proton > 300 MeV/c, no $\pi^{+/-}$ > 70 MeV/c, no γ/π^0 ; Electron scaled by Q⁴

Using SuSav2 / GTEST19_10b_00_000 with $Q^2 > 0.1$

Issues To Be Further Investigated

PRL 123, 131801 (2019)

v2

v3

arXiv:2009.07228 [nucl-th]

Deuterium GENIE v2 vs v3

Deuterium GENIE v2 vs v3

Deuterium GENIE v2 vs v3

Proton GENIE v2 vs v3

Proton GENIE v2 vs v3

v2

G2018

Proton GENIE v2 vs v3

v2

PRD 102, 053001 (2020)

arXiv:2009.07228 [nucl-th]

Mismodelling Impact On Mixing Parameters

Mismodelling Impact On Mixing Parameters

57

Available Data Sets

Nuclear Model Impact

Background Subtraction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

Data Driven Correction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

- Use measured (e,e'p π) events
- Rotate p, π around q to determine π detection efficiency
- Subtract undetected (e,e'p π)
- Repeat for higher hadron multiplicities

FSI Effects

FIG. 13. Illustration the effect of FSI on $\delta \alpha_T$ on ${}^{12}C$ at 1.161 GeV for a QE selection with $Q^2 \ge 0.1 \, GeV^2/c^2$ requiring exactly one proton with $P_p \ge 300 \, \text{MeV/c}$, no charged pions with $P_\pi \ge 70 \, \text{MeV/c}$ and no neutral pions or photons of any momenta. The electron events have been scaled by Q^4 .

Migration Matrices: Data vs SuSav2

Migration Matrices: Data vs G2018

Electrons vs Neutrinos

$$\frac{d^2\sigma^e}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[\frac{1-y}{x}F_2^e(x,Q^2) + y^2F_1^e(x,Q^2)\right] .(1)$$

Here F_1^e and F_2^e are the standard electromagnetic vector structure functions, $Q^2 = \mathbf{q}^2 - \omega^2$ is the squared momentum transfer and \mathbf{q} and ω are the three-momentum and energy transfers, $x = Q^2/(2m\omega)$ is the Bjorken scaling variable, m is the nucleon mass, $y = \omega/E_e$ is the electron fractional energy loss, and α is the fine structure constant. This formula is valid for $Q^2 \gg m^2$ where the electron-nucleon cross section is simplest. Cross sections at lower Q^2 have more complicated factors multiplying each of the two structure functions.

The corresponding inclusive charged current (CC) (ν, l^{\pm}) neutrino-nucleon cross section (where l^{\pm} is the outgoing charged lepton) has a similar form with the addition of third, axial, structure function:

$$\frac{d^2 \sigma^{\nu}}{dx dQ^2} = \frac{G_F^2}{2\pi} \left[\frac{1-y}{x} F_2^{\nu}(x,Q^2) + y^2 F_1^{\nu}(x,Q^2) - y(1-y/2) F_3^{\nu}(x,Q^2) \right] .$$
(2)

Here F_1^{ν} and F_2^{ν} are the neutrino-nucleus vector structure functions, F_3^{ν} is the axial structure function, and G_F is the Fermi constant. The parity-conserving structure functions, F_1^{ν} and F_2^{ν} , both include a vector-vector term identical to F_1^e and F_2^e , and an additional axial-axial term. See Refs. [4, 6, 7] for more detail.

Model Configurations

Using GENIE v3: **Control** Fermilab

• SuSav2: QE & MEC SuSav2 (GTEST19_10b_00_000) PRD 101, 033003 (2020)

• G2018: Rosenbluth QE & Empirical MEC (G18_10a_02_11a)

SuSav2 Configuration / GTEST19_10b_00_000

	Electrons	Neutrinos
QE	SuSav2	SuSav2
MEC	SuSav2	SuSav2
RES	Berger-Sehgal	Berger-Sehgal
DIS	AGKY	AGKY
FSI	hN2018	hN2018
Nuclear Model	Relativistic Mean Field	Relativistic Mean Field

G2018 Configuration / G18_10a_02_11a

	Electrons	Neutrinos
QE	Rosenbluth	Nieves
MEC	Empirical	Nieves
RES	Berger-Sehgal	Berger-Sehgal
DIS	AGKY	AGKY
FSI	hA2018	hA2018
Nuclear Model	Local Fermi Gas	Local Fermi Gas

Closure Test

- Use GENIE files
- Filter specific topologies (e.g. $1p0\pi p + 1p1\pi$)
- Subtracted & True $1p0\pi$ are in good agreement

69

Ready to look at Data/MC comparisons!

Single Transverse Variables (STV)

https://arxiv.org/pdf/1605.00179.pdf

$$\delta \vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}^{\ell} + \vec{p}_{\mathrm{T}}^{p},$$

$$\delta\phi_{\rm T} = \arccos \frac{-\vec{p}_T^{\ell} \cdot \vec{p}_{\rm T}^N}{p_{\rm T}^{\ell} p_{\rm T}^N}, \text{ and}$$
$$\delta\alpha_{\rm T} = \arccos \frac{-\vec{p}_T^{\ell} \cdot \delta \vec{p}_{\rm T}}{p_{\rm T}^{\ell} \delta p_{\rm T}}.$$

Well defined signal definition: Min θ_{p} Cut

(a) 1.1 GeV: $\theta = 17 + 7 / P$

@ 2.2 GeV: $\theta = 16 + 10.5 / P$

@ 4.4 GeV: $\theta = 13.5 + 15 / P$

See backup for p / $\pi^{+/-}$ definitions

• We do not acceptance correct below min θ

Well defined signal definition: Min θ_{ρ} Cut

(a) 1.1 GeV: $\theta = 17 + 7 / P$

(a) $2.2 \text{ GeV}: \theta = 16 + 10.5 / P$

(a) 4.4 GeV: $\theta = 13.5 + 15 / P$

See backup for p / $\pi^{+/-}$ definitions

• We do not acceptance correct below min θ

72
$\operatorname{Min} \theta_{p} \operatorname{Cut} = 12 \operatorname{deg}$

12 C @ E = 4.461 GeV (1st Sector)

$\operatorname{Min} \theta_{\pi^+} \operatorname{Cut} = 12 \operatorname{deg}$

(a) 1.1 GeV:
$$\theta = 17 + 4 / P$$

@ 2.2 GeV: $\theta = (P < 0.35)^*(25 + 7/P) + (P > 0.35)^*(16 + 10/P)$

@ 4.4 GeV: $\theta = (P < 0.35)^*(25 + 7/P) + (P > 0.35)^*(16 + 10/P)$

 12 C @ E = 4.461 GeV (1st Sector)

Systematics: Number of rotations

5.1 Statistical uncertainty due to the number of rotations

The statistical uncertainty due to the number of rotations contributes to the uncertainty of the obtained weights used for subtraction for undetected hadrons. This can be described by the uncertainty of probability in binomial distribution given by

$$\sigma = \frac{n}{N}\sqrt{\frac{1}{n} - \frac{1}{N}} \tag{36}$$

$$\lim_{n \to 0} \sigma = \frac{\sqrt{n}}{N} \tag{37}$$

$$\lim_{n \to N} \sigma = \frac{\sqrt{N-n}}{N} \tag{38}$$

where N is the total number of trials and n is the number of successes, and is kept small with sufficient number of rotation (is not included in uncertainty calculation).

Systematics: pion electro-production angular cross section dependence

10

.

$$\frac{d\sigma}{d\Omega_{\pi}^{*}}(W,Q^{2},\theta_{\pi},\phi_{\pi}) = A + B\cos\phi_{\pi} + C\cos 2\phi_{\pi}$$
(43)

$$A = (\sigma_{\rm T} + \epsilon \sigma_{\rm L}) \frac{p_{\pi}^*}{k_{\gamma}^*} \tag{44}$$

$$B = \sigma_{\rm LT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin \theta_{\pi} \sqrt{2\epsilon(\epsilon+1)} \tag{45}$$

$$C = \sigma_{\rm TT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin^2 \theta_{\pi} \epsilon \tag{46}$$

where p_{π}^* , θ_{π} and ϕ_{π} are the absolute value of the three momentum, polar and azimuthal angles of the π^0 in the CM-frame, and $k_{\gamma}^* = k_{\gamma}M/W$. ϕ_{π} is shown in Fig. 181 and is the azimuthal angle between the hadronic and leptonic planes and θ_{π} is the angle between the direction of the pion and the virtual photon. These expressions are taken from $\pi^0 p$ electroproduction studies in [23], but they can also be used for charged pion production studies, like in our case.

When subtracting for undetected one pion events in inclusive analysis we have assumed that the second and third terms on the right side of the Eq. 43 are negligible compared to the first term, and so the dependence of the cross section on ϕ_{π} can be neglected. To check if this assumptions is valid or not we have estimated the number of undetected 1 charged pion events with and without taking into account the ϕ_{π} dependence of the cross section, and have found that both lead to similar results.

For this study we have used the values of exclusive structure functions $\sigma_{\rm T} + \epsilon \sigma_{\rm L}$, $\sigma_{\rm TT}$ and $\sigma_{\rm LT}$ from [23] shown for $\cos \theta_{\pi} = 0.1$ and $0.4 \leq Q^2 \leq 1$ GeV². We have used the biggest provided absolute values $\sigma_{\rm T} + \epsilon \sigma_{\rm L} = 30 \ \mu \text{b}$, $\sigma_{\rm TT} = -10 \ \mu \text{b}$ and $\sigma_{\rm LT} = -2 \ \mu \text{b}$ corresponding to $Q^2 = 0.45 \ \text{GeV}^2$.

Systematics: pion electro-production angular cross section dependence

Figure 182: E_{QE} 0 pi spectrum for A(e, e') subtracted for undetected 1 charged pion events with (green) and without (red) accounting for ϕ_{π} dependence of the cross section at 4.4 GeV for ⁵⁶Fe target.

Systematics: Photon Identification Cut

5.3 Systematic uncertainty due to photon identification cut

In order to separate photons from neutrons, we cut on the neutral particle velocity. The velocity distribution of neutral particles has a peak at $\beta = 1$ corresponding to photons and

155

another at lower velocity corresponding to neutrons. To select photons we cut 2σ to the left of the photon peak and select the region above it. At 1.161 GeV we cut 3σ away from the photon peak as the neutron and photon peaks are well separated at this energy. The photon selection cuts for all the targets and beam energies are listed in Table.8.

In addition to the β cut, we require the energy of the photons to be greater than 0.3 GeV. This additional PID cut applied on photon reduces the estimated photon contamination. Therefore we add a 3% systematic uncertainty to the photon subtraction.

Systematics: Photon Identification Cut

Beam energy	Target	Cuts on	$\Delta t_{\rm EC}^{\rm offset}$ for different sectors					
		$eta_{ m EC}$	1	2	3	4	5	6
$1.1~{\rm GeV}$	$^{3}\mathrm{He}$	0.89	-0.73	-0.81	-0.91	-0.94	-0.92	-0.81
	$^{12}\mathrm{C}$	0.89	-0.71	-0.77	-0.87	-0.91	-0.89	-0.79
$2.2~{\rm GeV}$	$^{3}\mathrm{He}$	0.93	-1.37	-1.42	-1.55	-1.53	-1.49	-1.44
	$^{4}\mathrm{He}$	0.92	0.72	0.27	0.16	0.21	0.22	0.21
	$^{12}\mathrm{C}$	0.92	0.50	0.39	0.29	0.29	0.32	0.33
	$^{56}\mathrm{Fe}$	0.90	0.75	0.49	0.37	0.39	0.43	0.44
4.4 GeV	$^{3}\mathrm{He}$	0.92	-0.15	-0.26	-0.41	-0.29	-0.25	-0.23
	$^{4}\mathrm{He}$	0.91	-0.01	-0.11	-0.23	-0.26	-0.21	-0.09
	$^{12}\mathrm{C}$	0.92	-0.01	-0.11	-0.23	-0.27	-0.21	-0.08
	$^{56}\mathrm{Fe}$	0.91	-0.49	-0.14	-0.32	-0.25	-0.17	-0.35

Table 8: The EC timing offsets for different sectors and the cuts applied on the velocity of neutral particles to select photons for all targets at 2.2 and 4.4 GeV.

5.4 Effect of fiducial cuts on undetected particle subtraction

If we were able to obtain the ideal fiducial cuts that describe perfectly the geometrical acceptance with flat detection efficiency for different particles, our energy reconstruction results would be independent of how tight or wide the geometrical acceptance is. This is however hard to achieve in real analysis. We have estimated the sensitivity of energy reconstruction results to the change in geometrical acceptance. We have obtained the reconstructed energy spectra after changing the original fiducial cuts for charged pions and photons in different CLAS sectors. We have moved the left and right sides of θ vs ϕ distribution outline inwards in ϕ by 3°. This results in the geometrical acceptance in each sector becoming narrower by 6° in ϕ . We have then compared the reconstructed energy spectra obtained with original fiducial cuts to the ones obtained with modified tighter fiducial cuts. The plots for E_{calor} energy reconstruction

The systematic uncertainty due to the change in geometrical acceptance is the RMS of these two results obtained using the original and modified geometrical acceptances. The systematic uncertainty for each bin in reconstructed energy spectrum is calculated the same way as in the previous section and is given by the following formula:

$$x_{\rm RMS}^{i} = \sqrt{\frac{(x_1^{i} - x_{\rm mean}^{i})^2 + (x_2^{i} - x_{\rm mean}^{i})^2}{2}}$$
(50)

where x_{mean}^i is the mean bin content for bin *i* and is equal to $x_{\text{mean}}^i = (x_1^i + x_2^i)/2$, where x_1^i and x_2^i are the contents of the *i*th bin of the 1st and 2nd results.

The ratio of $\sigma_{E_{cal}}$ systematic uncertainty distributions over the E_{cal} reconstructed energy spectra are shown on the right side of Figure 186. This uncertainty is the biggest at 4.4 GeV analysis and is below 4%. At 2.2 GeV analysis it is less than 1.2% and at 1.1 GeV it is less than 0.8%.

Systematics: Sector Dependence

Normalized Yield

83

Systematics: Sector Dependence

Systematics: Sector Dependence

Quantifying uncertainty by using unweighted variance & by subtracting variance from statistical uncertainty

- Playing this game across all nuclei & energies
- Division by $\sqrt{N}_{sectors}$
- Flat uncertainty of 6%

Full analysis

Systematics: Normalization Uncertainties

PHYSICAL REVIEW C 73, 025204 (2006)

Single π^+ electroproduction on the proton in the first and second resonance regions at 0.25 GeV² < Q^2 < 0.65 GeV²

FIG. 12. The ratio of the measured elastic cross section to the parametrization of the world data [28]. The error bars represent the statistical uncertainty only. The solid line is from the fit of the data points to a constant.

1st e4v Submission

Calorimetric energy reconstruction using the $1p0\pi$ channel

- Area normalized results
- No information with respect to absolute scale
- G2018 offset potentially due to binding energy issue

+Data

-SuSav2 (Total) -QE -MEC -RES-DIS

Step #2: Normalized Yield

Data

- Divide # events by integrated charge & target thickness to get xsec in µb
- \bullet Divide by bin width to get $\mu b/GeV$

Simulation

- Get GENIE total cross section for E_e / target A & Q2 > Q2_{min}
- xsec = (Selected detected events / all generated events) * total xsec / bin width

No corrections for CLAS acceptance or for bremsstrahlung radiation

Step #2: Normalized Yield

Step #3a: Acceptance Correction

- Start from reco / true ratio w/o radiation to obtain acceptance correction
- Average on a bin-by-bin basis x = |SuSav2 + G2018| / 2
- Due to offset, G2018 Ecal predictions have been shifted by 10/25/36 MeV for 4He/12C/56Fe respectively

Step #3a: Example 12C @ 1.1 GeV

Use reco / true ratio to obtain acceptance correction

Step #3a: Acceptance Correction

Use average to apply acceptance correction

Step #3b: Radiation Correction

Acceptance Correction Factors

94

Step #4: Absolute Cross Sections

After both acceptance & radiation corrections, without systematics yet

Energy Reconstruction Accuracy

Peak Fraction (%)		1.161 GeV	2.261 GeV	4.461 GeV	
	Data	-	41	38	
⁴ He	SuSav2	-	45	22	
	G2018	-	39	24	
¹² C	Data	39	31	32	
	SuSav2	44	27	12	
	G2018	51	37	23	
⁵⁶ Fe	Data	-	20	23	
	SuSav2	-	21	10	
	G2018	-	30	19	

Less than 50% of our selected events result in an E_{reco} close to E_{beam}

Averaged Acceptance Correction Uncertainty Over True Beam Energy

On a bin-by-bin basis

$$x = |SuSav2 - G2018| / Sqrt(12)$$

Bin Entry = x / Average * 100 %

Same recipe as for acceptance correction but, to avoid infinities, will use average (1 bin) around the peak and average(reco) / average(true) for correction factor

Example: Reco & True Spectra for 12C @ 1.1 GeV

Acceptance correction = True / Reco

Example: Acceptance Correction for 12C @ 1.1 GeV

99

All Nuclei & Energies

E_{QE} All Nuclei & Energies

A & E Dependence

Angular A & E Dependence

Angular A & E Dependence

- Sector dependence
- Detector acceptance
- Photon identification cuts
- $\phi_{q\pi}$ cross section dependence
- Number of rotations

Systematics

Source	Uncertainty (%)			
Detector acceptance Identification cuts $\phi_{q\pi}$ cross section dependence Number of rotations	2,2.1,4.7 (@ 1.1,2.2,4.4 GeV)			
Sector dependence	6			
Acceptance correction	2-15			
Overall normalization	3			
Electron inefficiency	2			

* See backup slides

Q4 Scaling Effect

CLAS6 Detector

J. Alcorn et al. | Nuclear Instruments and Methods in Physics Research A 522 (2004) 294-346

Hall A NIM

Scintillators Cherenkov SSD proton 1 1 CH2 target **Beam Axis** 1010 SSD proton SSD Electron Time Flight

Schematic layout of the eP energy measurement system, showing the arrangement of its components, the polyethylene (CH2) target, the Cherenkov detectors, the silicon-strip detectors (SSD) for protons and electrons and the scintillator detectors, used for time-of-flight measurements.
MAMI Detector

Parallel Efforts

<u>ArTi (e,e') & (e,e'p)</u> See talk by L. Jiang

See talk by L. Doria

111