Bottomonium suppression in an open quantum system using the quantum trajectories method

J. H. Weber^{1,2} in collaboration with N. Brambilla³, M.-A. Escobedo⁴, M. Strickland⁵, A. Vairo³, P. Vander Griend³

¹Humboldt-University of Berlin & IRIS Adlershof, Berlin, Germany
 ²Michigan State University, East Lansing, MI, USA
 ³Technical University Munich, Garching, Germany
 ⁴IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela,

9th Workshop of the APS topical group on hadronic physics 04/13/2021

arXiv:2012.01240 and forthcoming

Introduction	OQSpNRQCD	Quantum trajectories	Results	Summary
	0000000	00000	00000	
Outline				

2 OQSpNRQCD

3 Quantum trajectories

- Evidence of bottomonium suppression in multiple experiments
- Stronger suppression of higher excited states
- Various models are mostly consistent with experiment
- Systematic, first-principles calculation is very desirable

Scales governing in-medium quarkonium

- Separation of nonrelativistic scales permits EFT (NRQCD, pNRQCD)
- Intertwined thermal and nonrelativistic scales permit various hierarchies, with or without different types of thermal modification of quarkonium
- Thermal scales at $T \sim$ a few T_c : $\pi T \sim m_D$, strongly-coupled medium!

0	000000	00000	00000	0
Quarkonium ir	effective fie	ld theory		

- Integrating out scale $M \gg 1/r \rightarrow$ nonrelativistic QCD (NRQCD)
- Integrating out scale $1/r \gg \alpha_s/r$ (multipole expansion!) \rightarrow pNRQCD
- Degrees of freedom are heavy color-singlet and -octet fields + light d.o.f
- \bullet Potential nonrelativistic QCD (pNRQCD) Lagrangian^1 at NLO

$$\mathcal{L}_{\text{pNRQCD}} = \mathcal{L}_{\text{light}} + \mathcal{L}_{\text{glue}} + \int d^3 r \text{ tr } \left\{ S^{\dagger} [i\partial_0 - h_s]S + O^{\dagger} [iD_0 - h_o]O \right\} \\ + V_A \text{tr } \left\{ O^{\dagger} r \cdot g E S + S^{\dagger} r \cdot g E O \right\} + \frac{V_B}{2} \text{tr } \left\{ O^{\dagger} r \cdot g E O + O^{\dagger} O r \cdot g E \right\} + \dots$$

• Nonlocal Wilson coefficients play the role of potentials

$$h_s = rac{-\Delta}{2M} + V_s(r), \quad h_o = rac{-D^2}{2M} + V_o(r), \quad V_A, V_B = 1 + \mathrm{h.o.}$$

- Octet contribution in vacuum \rightarrow heavy $q\bar{q}$ bound into different hadrons
- V_A resp. V_B permit transitions of types singlet $\leftrightarrow \mathrm{octet}$ or octet $\leftrightarrow \mathrm{octet}$

¹Brambilla et al., Nucl. Phys. B566 (2000) 275

• Eventually hadronize at their respective freezeout temperatures

$$\begin{split} \dot{\rho}_{\text{total}} &= -\mathrm{i} \big[\mathcal{H}_{\text{total}}, \rho_{\text{total}} \big], \quad \rho_{\text{total}} = \rho_{\text{probe}} \oplus \rho_{\text{medium}} \\ \mathcal{H}_{\text{total}} &= \mathcal{H}_{\text{probe}} \otimes \mathrm{Id}_{\text{medium}} + \mathrm{Id}_{\text{probe}} \otimes \mathcal{H}_{\text{medium}} + \mathcal{H}_{\text{int}} \\ \text{Trace out the medium: } \rho_{\text{probe}} \equiv \mathrm{tr}_{\text{medium}} \left[\rho_{\text{total}} \right] \end{split}$$

Time scale	s of in-medium l	hottomonium		
0	000000	00000	00000	0
	OQSpNRQCD			

• For certain conditions² (Markovian, quantum Brownian) bottomonium time evolution has form of Lindblad equation³ $\dot{\rho}_{\rm probe} = -i \left[\mathcal{H}_{\rm probe}, \rho_{\rm probe} \right] + \sum_{n} \left| C_n \rho_{\rm probe} C_n^{\dagger} - \frac{\left\{ C_n^{\dagger} C_n, \rho_{\rm probe} \right\}}{2} \right|$ • Collapse (jump) operators C_n are related to partial widths $\Gamma_n \equiv C_n^{\dagger} C_n, \quad \Gamma = \sum \Gamma_n$ • Non-hermitian effective Hamiltonian + jump term $H_{\rm eff} \equiv H_{\rm probe} - \frac{{\rm i}}{2} \Gamma, \quad \dot{\rho}_{\rm probe} = -{\rm i} \big[H_{\rm eff}, \rho_{\rm probe} \big] + \sum C_n \rho_{\rm probe} C_n^{\dagger}$

²Brambilla et al., Phys. Rev. D96 (2017) 034021; Phys. Rev. D97 (2018) 074009
 ³Lindblad, Comm. Math. Phys. 48 (1976) 119; V. Gorini et al., J. Math. Phys. 17 (1976) 821

• Coupled master equations for singlet/octet densities⁴

$$\begin{split} \dot{\rho}_{s}(t;t) &= -i[h_{s},\rho_{s}(t;t)] - \Sigma_{s}(t)\rho_{s}(t;t) - \rho_{s}(t;t)\Sigma_{s}^{\dagger}(t) \\ &+ \Xi_{so}[\rho_{o}(t;t),t], \\ \dot{\rho}_{o}(t;t) &= -i[h_{o},\rho_{o}(t;t)] - \Sigma_{o}(t)\rho_{o}(t;t) - \rho_{o}(t;t)\Sigma_{o}^{\dagger}(t) \\ &+ \Xi_{os}[\rho_{s}(t;t),t] + \Xi_{oo}[\rho_{o}(t;t),t] \\ \end{split}$$
Self-energies $\Sigma_{s,o}$ are related to thermal mass shifts and widths

 $2\operatorname{Re}\left[-\mathrm{i}\Sigma_{s,o}(t)\right] = 2\delta m_{s,o}(t), \quad -2\operatorname{Im}\left[-\mathrm{i}\Sigma_{s,o}(t)\right] = \Gamma_{s,o}(t)$

• OQSpNRQCD is fully consistent, non-Abelian quantum field theory that conserves the number of heavy quarks at all times

⁴Brambilla et al., Phys. Rev. D97 (2018) 074009

Lindblad e	quations in OQS	DNRQCD		
	0000000	00000	00000	
	OQSpNRQCD		Results	

• Scale hierarchy $1/a_0 \gg \pi T \sim m_D \sim g(T)T \gg E \sim \alpha_s(1/a_0)/a_0$ (strongly-coupled plasma at not too low temperatures) $\Sigma_{s,o}(T(t)) = \begin{cases} 1\\ \frac{N_c^2 - 2}{2(N_c^2 - 1)} \end{cases} r^2 (\kappa[T(t)] + i\gamma[T(t)]),$ $\Xi_{ij}(\rho_j, T(t)) = \begin{cases} 0 & \frac{1}{N_c^2 - 1}\\ 1 & \frac{N_c^2 - 4}{2(N_c^2 - 1)} \end{cases} \sum_{k=1}^3 r_k \rho_j r_k \kappa[T(t)]$

	OQSpNRQCD	Quantum trajectories	
		00000	
Solving the	e Lindblad equati	on	

$$\dot{\rho}_{\text{probe}} = -i \left[H_{\text{eff}}, \rho_{\text{probe}} \right] + \sum_{n} C_{n} \rho_{\text{probe}} C_{n}^{\dagger}, \quad H_{\text{eff}} \equiv H_{\text{probe}} - \frac{1}{2} \Gamma$$
• Directly solving the Lindblad equation is very expensive ...

- *H*_{eff} is diagonal both in angular momentum and in color
 Jump term couples sectors with *l'* = *l* ± 1 in dipole transitions
 ⇒ ρ_{probe} is block-diagonal matrix in *l* = 0, 1, ..., ∞ and *c* = *s*, *o*
 - \bullet Radial direction discretized: N_r sites, Dirichlet boundary cond.
 - \bullet Solution of Lindblad equation needs some trunction $I \leq {I_{\max}}^5$
 - ρ_{probe} has dimensions $[\rho_{\text{probe}}] = N^2 = (N_r \times (I_{\text{max}} + 1) \times 2)^2$
 - Large matrix size + inter-block cross-talk challenging

 $^{{}^{5}}I_{\rm max} = 1$ in: Brambilla et al., Phys. Rev. D97 (2018) 074009

Introduction	OQSpNRQCD	Quantum trajectories	Results	Summary
		00000		
Initial	bb̄ states			

- $b\bar{b}$ production in hard process: delta function in position space
- \rightarrow on lattice contaminated by modes $p\sim\pi/a$ near lattice cutoff
 - \bullet Soften the locality using Gaussian and derivatives @ $c=0.2a_0$

$$u_l(r,t=0) \propto r^{l+1} e^{-r^2/c^2}$$

• Computational cost increases dramatically for narrower Gaussian

- T dependence via heavy-quark diffusion coefficients $\kappa[T], \gamma[T]$
- Temperature evolution T(t) from anisotropic hydrodynamics⁶

• Production points sampled according to $N_{b\bar{b}}(x, z, p_T) \propto \frac{N_{bin}(x, y)}{(p_+^2 + M^2)^2}$

⁶Alqahtani et al., Phys. Rev. C92 (2015) 054910; C95 (2017) 034906; PPNP 101 (2018) 204

- $\vec{N}_{QGP} = (N_{1S}, N_{1S}, 3 \times N_{1P}, N_{3S}, 3 \times N_{2P})^T$ obtained as $\vec{N}_{QGP}(i) = \langle N_{\text{binary}}[b] \rangle \times P_{\text{survival}}(i) \times \vec{\sigma}_{\text{direct}}$
- Post feed-down normalize to *pp* scaled by binary collisions (AA)

	OQSpNRQCD	Quantum trajectories	Results	
			00000	
Simulation det	tails			

- Model: $\alpha_s(1/a_0), m_b, \hat{\kappa} \equiv \kappa/\tau^3, \hat{\gamma} \equiv \gamma/\tau^3, T_F = 250 \,\mathrm{MeV}$
- Coupling and mass fixed in terms of vacuum physics

 $\alpha_s(1/a_0) = 0.2071, \quad m_b = 4.881 \,\text{GeV}, \quad a_0 = 0.146 \,\text{fm}.$

 $\bullet\ {\rm Fixed}\ {\rm with}\ {\rm lattice}\ {\rm gauge}\ {\rm theory}\ {\rm input}: \{{\rm dashed}, {\rm solid}, {\rm dot-dashed}\}$

$$\begin{split} \hat{\kappa} &= \frac{1}{(\kappa_0 + \kappa_1 T^{1/2} + \kappa_2 T^1 + \kappa_3 T^{3/2})} & \longrightarrow \{\kappa_L < \kappa_C < \kappa_U\},\\ \hat{\gamma} &= -1.75 \pm 1.75 & \longrightarrow \{\gamma_L < \gamma_C < \gamma_U\}. \end{split}$$

• Also tested constant $\hat{\kappa}$

• ~ 900 k physical traj. (45 M q.traj.) for (κ_C, γ_C) pair • ~ 700 k physical traj. (35 M q.traj.) for the other (κ, γ) pairs

S-wave bottomonium R_{AA}

15/19

Double ratios vs N_{part}

16/19

	OQSpNRQCD	Quantum trajectories	Results	
			00000	
Double rat	ios vs p _T			

 γ_L is seems to be disfavored by the double ratio $R_{AA}(\Upsilon(2S))/R_{AA}(\Upsilon(1S))$

0000000	00000	00000	
OQSpNRQCD		Results	

Bottomonium elliptic flow *v*₂ vs centrality

Introduction	OQSpNRQCD	Quantum trajectories	Results	Summary
				•
Summary &	2 Outlook			

- QTraj project aims at predicting bottomium suppression via ab-initio OQSpNRQCD + aHydro MC lattice simulations⁷
- Systematic expansion with a consistent power counting scheme
- Effect of **dissociation & recombination** (i.e. quantum jumps) is fully quantifiable
- \bullet Off-diagonal overlaps studied as well \rightarrow statistically irrelevant
- \bullet Good agreement for $N_{\rm part}\gtrsim 100$ (like all models)
- \bullet Cold nuclear matter effects are expected to lower R_{AA} at low T
- Parameters motivated by vacuum physics or lattice gauge theory
- $\bullet\,$ Could constrain transport coefficients with more precise data
- Double ratios quite insensitive to $\hat{\kappa};\,\gamma\approx \mathsf{0}$ favored by the data

⁷Session L04: Heavy Quarkonia as a Probe of Hot and Cold QCD Media: Current and Future (Sunday, 04/18/2021): N. Brambilla (3:45 pm) & M. Strickland (4:21 pm)

Thank you for listening!

Initial state dependence

• Gaussian vs bound state initial condition: with Gaussian less suppression of excited states, more suppression of ground state

Jump vs no-jump evolution

• With jumps vs without jumps: excited state survival probabilities differ substantially only for $\hat{\gamma} \approx 0$ and $N_{\rm part} \approx 200$

Temperature dependence of $\hat{\kappa}$

$\hat{\kappa}(\mathcal{T}) = 1/(\kappa_0+\kappa_1\mathcal{T}^{1/2}+\kappa_2\mathcal{T}^1+\kappa_3\mathcal{T}^{3/2})$					
—	κ_L	κ _C	κ_U		
κ_0	-0.8071156107961191	-0.51888965324059919	-0.38196931268763431		
κ_1	1.5560083173857689	0.98030718982413288	0.71513037386309615		
κ_2	-0.14261556412444807	-0.083409768363912536	-0.058542116432588807		
κ_3	0.0071217431979965582	0.0039726666253277474	0.0027170443410800557		
• Tests with $\hat{k} = 1$ are covered by uncertainty bands of \hat{k} variation					
•]	Past value ⁸ of $\hat{\kappa} = 2.6$	lead to substantially	more suppression		

⁸Brambilla et al., Phys. Rev. D96 (2017) 034021; Phys. Rev. D97 (2018) 074009

Dependence on T_f

- Varied $T_f = 250 \text{ MeV}$ by $\pm 10\%$; effect mildly dependent on N_{part}
- Magnitude of the effect is comparable to variation of $\hat{\kappa}$ and $\hat{\gamma}$

Details of the feed-down

- \bullet Use experimental, rapidity-averaged $(|y| \leq 2.4)$ cross-sections
- Fold di-muon branching ratios B with S-wave di-muon yields⁹ $B^{d\sigma}/dy(S) \approx (1.44, 0.37, 0.15)^T$ nb, $B \approx (2.5, 1.9, 2.2)^T$ %
- We extrapolate ratios of (mP)- and (nS) yields 10 to $\sqrt{s}=5\,{\rm TeV}$
- Theory expectation $\sigma[\chi_{b2}]/\sigma[\chi_{b1}] \approx 1.176$ (for 1P and 2P)
- Theory-based estimate $\sigma[\chi_{b0}] \approx (\sigma[\chi_{b1}] + \sigma[\chi_{b2}])/8$ (for 1P and 2P)

 $\vec{\sigma}_{exp} = (57.6, 19.3, 3.72, 13.69, 16.1, 6.8, 3.27, 12.0, 14.15)^T$ nb

for $\vec{N} = (\Upsilon(1S), \Upsilon(2S), \chi_{b0}(1P), \chi_{b1}(1P), \chi_{b2}(1P), \Upsilon(3S), \chi_{b0}(2P), \chi_{b1}(2P), \chi_{b2}(2P))^T$

For state *i* and (centrality) class *c*: $R_{AA}^{i}(c) = \frac{F \cdot S(c) \cdot \vec{\sigma}) \operatorname{direct}^{i}}{\sigma_{i}}$

⁹Sirunyan et al. [CMS], Phys. Lett. B 790 (2019) 270 ¹⁰Aaij et al. [LHCb], Eur. Phys. J. C74 (2014) 3092