Hydrodynamics, Kinetics, and Thermalization of QGP

Derek Teaney Stony Brook University

Hydrodynamics in action in high energy nuclear collisions

Viscous Hydrodynamics Equations:

▶ Use a gradient expansion to characterize corrections order by order

$$\pi^{\mu\nu} = \underbrace{-\eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla \cdot u \right)}_{\text{shear strain } O(\partial)} + \underbrace{\cdots}_{\text{2nd order } O(\partial^2)}$$

 \blacktriangleright Want to calculate the parameters p(T) and $\eta(T)$ from theory

To compute the kinetic coefficients $\eta(T)$ need QCD kinetic theory!

Computing the shear viscosity with weak coupling kinetics:

The shear to entropy ratio determines a relaxation time:

• The perturbation theory is in g not $\alpha_s = g^2/4\pi$:

$$\frac{\eta}{s} = \frac{1}{g^4} \Big(\underbrace{C + C \log(g)}_{\text{LO Boltzmann}} + \underbrace{$$

$$\underbrace{Cg + Cg\log(g)}_{} + \ldots \Big)$$

"NLO" from soft gluons

`

Three rates for QCD Kinetic Theory at LO and "NLO" in QGP:

$$(\partial_t + \boldsymbol{v}_p \cdot \partial_{\mathbf{x}}) f(t, \boldsymbol{x}, \boldsymbol{p}) = -C[f]$$

- 1. Hard Collisions: $2 \leftrightarrow 2$ (trivial) $P \sim E$ $Q \sim T$ vacuum matrix elements
- 2. Collisions with soft random classical field (Braaten, Pisarski 1995)

soft fields have $p \sim gT$ and large occupation numbers $n_B \sim \frac{T}{p} \sim \frac{1}{q}$

The most important process: collinear radiation

3. Collinear Bremm: $1 \leftrightarrow 2$

Baier, Dokshitzer, Mueller, Peigne,

Schiff; Arnold, Moore, Yaffe 2001

Random walk induces collinear bremsstrhalung at LO

- Includes multiple scattering in the bremm rate (the LPM effect)
- ▶ The same collinear radiation cause the energy loss of jets in QGP

At "NLO" need to understand the overlap between these processes

The shear viscosity versus temperature

LO: Arnold, Moore, Yaffe; NLO: S. Caron-Huot; Ghiglieri, Moore, Teaney

In the temperature range relevant to heavy ion collisions:

$$\tau_R = \frac{\eta}{sT} \simeq \frac{(2 \leftrightarrow 8)\hbar}{4\pi T}$$

Larger than hydro fits where $4\pi\eta/sT \simeq 1.0$ see Bernhard.Morland.Bass.Liu.Heinz

Using QCD kinetics for Heavy Ion Collisions

Kinetic theory in the expanding geometry:

$$ds^2 = -d\tau^2 + dx^2 + dy^2 + \underbrace{\tau^2 d\eta^2}_{dz^2}$$

Kurkela, Zhu; Keegan, Kurkela Mazeliauskas, Teaney; Kurkela, Mazeliauskas, Paquet, Schlichting

The initial production and the Color Glass Condensate (CGC)

At high energies and large nuclei, the gluon density gets very large

$$\frac{1}{\pi R_A^2} \frac{dN}{dy} \sim \frac{Q_s^2}{\alpha_s} \qquad Q_s \gg \Lambda_{QCD}$$

Then, the initial passage can be treated with classical QCD (the CGC) $_{\mbox{McLerran},\mbox{Venugopalan}}$

Mapping the fluctuating CGC initial conditions to hydro

Use QCD kinetic theory to map the CGC initial state to hydrodynamics

 $R_{\rm nuc} \gg R_{\rm prot} \sim \ell_{\rm mfp} \gg 1/Q_s$

Mapping the fluctuating CGC initial conditions to hydro

Causality limits the equilibration dynamics within a causal circle

 $R_{\rm nuc} \gg R_{\rm prot} \sim \ell_{\rm mfp} \sim c \tau_{\rm hydro} \gg 1/Q_s$

An approximation scheme for the equilibration dynamics:

1. Determine the evolution of the average (homogeneous) background Bottom-Up Thermalization

2. Construct a Green function to propagate the linearized fluctuations.

$$\underbrace{\frac{\delta e(\tau, \boldsymbol{x})}{e(\tau)}}_{e(\tau)} = \int d^2 \boldsymbol{x}' \, G(\boldsymbol{x} - \boldsymbol{x}'; \tau, \tau_o) \qquad \underbrace{\frac{\delta e(\tau_0, \boldsymbol{x})}{e(\tau_0)}}_{e(\tau_0)}$$

final energy perturb

initial energy perturb

The background and "bottom-up" thermalization

Baier, Mueller, Schiff, Son (2001);

Berges, Boguslavski, Schlichting, Venugopalan (2014); Berges, Mace, Schlichting; Boguslaski, Kurkela, Lappi, Peuron (2018)

Builds upon the first numerical realization

$p^2 f(p_\perp, p_z)$

Initialization:

- 1. Partons are initialized with:
 - $\left< p_{\perp}^2 \right> \sim Q_s^2 \qquad \left< p_z^2 \right> \simeq 0$
- 2. Take a coupling of $\alpha_s=0.3$ corresponding to

$$\frac{\eta}{s} = 0.6 = \frac{7.5}{4\pi}$$

also use $\lambda \equiv g^2 N$.

 $p^2 f(p_\perp, p_z)$

Builds upon the first numerical realization

p_z

Initialization:

- 1. Partons are initialized with:
 - $\left< p_{\perp}^2 \right> \sim Q_s^2 \qquad \left< p_z^2 \right> \simeq 0$
- 2. Take a coupling of $\alpha_s=0.3$ corresponding to

$$\frac{\eta}{s} = 0.6 = \frac{7.5}{4\pi}$$

also use $\lambda \equiv g^2 N$.

Builds upon the first numerical realization

Initialization:

- 1. Partons are initialized with:
 - $\left< p_{\perp}^2 \right> \sim Q_s^2 \qquad \left< p_z^2 \right> \simeq 0$
- 2. Take a coupling of $\alpha_s=0.3$ corresponding to

$$\frac{\eta}{s} = 0.6 = \frac{7.5}{4\pi}$$

also use $\lambda \equiv g^2 N$.

Builds upon the first numerical realization

Initialization:

- 1. Partons are initialized with:
 - $\left< p_{\perp}^2 \right> \sim Q_s^2 \qquad \left< p_z^2 \right> \simeq 0$
- 2. Take a coupling of $\alpha_s = 0.3$ corresponding to

$$\frac{\eta}{s} = 0.6 = \frac{7.5}{4\pi}$$

also use $\lambda \equiv g^2 N$.

When does the stress tensor approach 2nd order hydrodynamics?

Measure time in a physical relaxation time given by τ_R :

$$\frac{\tau}{\tau_R} \equiv \frac{\tau T_{\rm eff}(\tau)}{4\pi \eta/s} \qquad {\rm with} \qquad e(\tau) \equiv \frac{\pi^2}{30} \nu_{\rm eff} T_{\rm eff}^4(\tau)$$

Can start hydro when $\tau T_{\rm eff}(\tau)/4\pi\eta/s \sim 1$

Translating "thermalization time" into physical units:

- The calculation used units which fixed the final entropy τs :
 - The final entropy is highly constrained by hydrodynamic fits, yielding:

$$\tau_{\text{hydro}} \approx 1.1 \,\text{fm} \,\left(\frac{4\pi(\eta/s)}{2}\right)^{\frac{3}{2}} \left(\frac{\nu_{\text{eff}}}{40}\right)^{1/2} \underbrace{\left(\frac{4.1 \,\text{GeV}}{\langle \tau s \rangle}\right)^{-1/2}}_{\text{entropy per rapidity}}$$

Require that this time be smaller than the radius of the system:

- This yields an estimate for the smallest entropy where hydro applies

$$\left(\frac{dN_{\rm ch}}{d\eta}\right)_{\rm hydro} = 63 \left(\frac{4\pi(\eta/s)}{2}\right)^3 \left(\frac{\nu_{\rm eff}}{40}\right) \left(\frac{S/N_{\rm ch}}{7}\right)^{-1}$$

Gives constraints on smallest systems where hydrodynamics applies. These systems are being studied in very peripheral collisions.

RTA: Almaalol, Strickland, Noronha, Denicol; Blaizot, Yan ; Behtash, Martinez, Kamata; AdS/CFT: Heller, Spalinski, Janik; QCD kinetcs: Mazeliauskas, Kurkela

RTA: Almaalol, Strickland, Noronha, Denicol; Blaizot, Yan ; Behtash, Martinez, Kamata; AdS/CFT: Heller, Spalinski, Janik; QCD kinetcs: Mazeliauskas, Kurkela

RTA: Almaalol, Strickland, Noronha, Denicol; Blaizot, Yan ; Behtash, Martinez, Kamata; AdS/CFT: Heller, Spalinski, Janik; QCD kinetcs: Mazeliauskas, Kurkela

RTA: Almaalol, Strickland, Noronha, Denicol; Blaizot, Yan ; Behtash, Martinez, Kamata; AdS/CFT: Heller, Spalinski, Janik; QCD kinetcs: Mazeliauskas, Kurkela

The initial energy (read Q_s) is tightly constrained by hydro+non.eq. attractor

Changes during the equilibration process

- 1. Increase in multiplicity.
- 2. Change in chemical composition.

Kurkela and Mazeliauskas

The final gluon multiplicity is 2.5 times the initial gluon multiplicity

Mapping the fluctuating initial conditions to hydro

Final results should be insensitive to the switching time $au_{
m hydro}$

Do hydro results depend on $au_{ m hydro}$?

Kinetics runs from $\tau_0 = 0.1$ up to τ_{hydro} , then hydro runs up to τ_{out} .

Energy density insensitive to $\tau_{\rm hydro}$ as we want. The shear strain agrees with the hydro constitutive relations

Code starting to be used for real stuff: Gale, Paquet, Schenke, Shen (thermal photons); da Silva et al arXiv:2006.023424 (flow and $\langle p_T \rangle$; Shen, Schenke, Teaney $\langle p_T \rangle$; Coquet, Xiaojian Du, et at all 2104.07622 (dileptons)

Overlapping effective theories for heavy ion collisions

Gives a 0th order description of the whole heavy ion event: from wave function (Classical Yang-Mills), to kinetics, to hydro

Summary of QCD kinetics

- 1. Computed transport coefficients with QCD kinetics to "NLO"
 - Convergence is poor, but the picture is robust
- 2. Described a first principles (but asymptotic) picture of thermalization
 - Have a useful computer code to take to the initial state to hydro

