Probing the Hadronic Spin Structure and Dynamics in High-Energy Polarized Proton-Proton Collisions at RHIC

Matt Posik Temple University

9th Workshop of the APS Topical Group on Hadronic Physics April 13th-16th 2021

Proton Structure and QCD Effects

Questions

1. How do quarks, gluons and their dynamics contribute to the proton spin?

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta\mathbf{G} + \mathbf{L}_{\mathbf{q},\mathbf{g}}$$

2. How is the transverse spin structure (δq) of the proton distributed?

3. What do transverse-spin phenomena teach us about the structure of the proton and properties of QCD?

- Probing the proton structure via strong interactions in polarized proton-proton collisions
 - Sensitive to polarized parton distribution functions (PDFs), fragmentation functions (FFs), spin-momentum correlations

Relativistic Heavy Ion Collider

- **RHIC** at Brookhaven National Laboratory
 - World's only polarized proton collider
 - Proton collisions at center of mass
 energies of 62, 200, and 510 GeV
 - Transverse and longitudinal polarization
 - Polarized protons can also collide
 with nuclei, e.g. d, Al, Au

RHIC: The Main Experiments

STAR

- $\circ~$ Large acceptance and PID for $|\eta|<1,\Delta\phi\sim2\pi$
- \circ Complimented with forward EM calorimetry (1 < η < 2)
- FMS (2.6 < η < 4)
- Well suited for jets and correlations
- Current upgrades: forward calorimeter and tracking systems

APS-GHP-2021, M. Posik

PHENIX

• High resolution and rate capabilities

STAR

- Central arms ($|\eta| < 0.35$, $\Delta \phi \sim \pi$) well suited for π^0 and η
- Forward muon arms (1.2 < $|\eta|$ < 2.4)
- Final run in 2016
- Being replaced by sPHENIX

4

 $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$

BEMC

A_N Puzzle

Mechanisms for A_N

 \Box Two theoretical QCD frameworks used to try to explain and reproduce A_{N}

- 1. Colinear/twist-3 formalism (Efremov-Teryaev'82, Qui-Sterman'91)
 - Multiparton correlations and fragmentation functions
 - Describe spin momentum correlations from quantum mech. interference between scattering off one parton verses scattering off of two.
 - Two types: qgq and ggg
- 2. Transverse Momentum Dependent (TMD) patron distributions or fragmentations
 - \circ Depend on transverse momentum k_{τ}
 - \circ Two types of effects correlating spin and k_{τ}
 - Sivers Mechanism (Sivers '90): Correlation between nucleon spin and parton k_T in the initial state
 - Collins Mechanism (Collins'93): Correlation between quark spin and k_T in the fragmentation process

Twist-3

00000

 x_1P

xP

Searching for Origins of A_N

$\Box p^{\uparrow}p \rightarrow EM jet + X$

- \circ EM-Jet A_N are considered to be sensitive to initial state effects
- Collins asymmetry, the azimuthal asymmetry of a hadron within a jet originating from the fragmentation of a transversely polarized quark, is sensitive to final state effects is small

$\Box p^{\uparrow}p \to \pi^0 + X$

- Isolated $\pi^0 A_N$ much larger than non-isolated $\pi^0 A_N$ → not understood
 - Larger than jet A_N

arXiv:2012.11428 (accepted to PRD)

APS-GHP-2021, M. Posik

Searching for Origins of A_N

 $\Box p^{\uparrow}p \to n + X$

- \circ A_N of *n* at very forward rapidity
- $\,\circ\,$ Help aid in understanding underlying n A_N

mechanism

PHENIX, PRD 103, 032007 (2021)

APS-GHP-2021, M. Posik

8

A_N In pA Collisions

$$A_{N}(pA) \equiv \frac{\sigma_{pA}^{\uparrow} - \sigma_{pA}^{\downarrow}}{\sigma_{pA}^{\uparrow} + \sigma_{pA}^{\downarrow}}$$

- □ A_N is sensitive to the environment, including initial or final state interactions of hard scattering partons
- \Box STAR measured A_N in pp, pAl, and pAu and found
 - Similar asymmetries amongst the three collision types weak nuclear dependence
 - $~\circ~~$ A $_{_N}$ rises with p $_{_T}$ (~< 5 GeV) for x $_{_F}$ ~< 0.5

9

Twist-3 Correlations and Gluon Sivers Functions

□ Midrapidity is sensitive to trigluon twist-3 correlation function and gluon Sivers function

 $\Box p^{\uparrow}p \rightarrow \eta/\pi^0 + X$

- A_N of η mesons are potentially sensitive to effects from strange quark contributions, isospin differences and/or hadron mass
- \circ Mid-rapidity π^0 and η A_N are consistent with each other and zero

$\Box p^{\uparrow}p \rightarrow \gamma^{iso} + X$

- Sensitive to the gluon spin-momentum correlations in the proton (twist-3 trigluon correlation function)
- o Isolated direct photon A_N is **not sensitive** to hadronization effects or final-state color interactions
- o Small qgq contribution is expected

PHENIX, arXiv:2102.13585

APS-GHP-2021, M. Posik

Sivers Effect

□ Sivers Effect

- $\circ~$ Measures spin-dependent parton k_{T}
- $\circ~$ Non-zero k_{T} leads to tilt of di-jet opening angle in the transverse plane
- Tag jet based on momentum weighted track curvature allows more sensitivity to parton type

- Significant η -average effects
- \circ Flavor dependence
 - **u** and **d** quark **opposite** sign
 - d quark about twice as large as average k_T for u quark

STAR, DNP 2020

Transversity

□ Transversity – net density of transversely polarized quarks in a transversely

polarized nucleon

$$h_1(x, Q^2) = q^{\uparrow}(x, Q^2) - q^{\downarrow}(x, Q^2)$$

• Least known of the three leading twist colinear PDFs.

□ In pp collisions, transversity couples to FF: Collins FF and Interference FF (IFF)

- Creates azimuthal modulations in the cross section which leads to obser asymmetries
- The transverse spin transfer to hyperons, $D_{TT_{,}}$ is sensitive to strange quark transversity (and polarized FF)

$$D_{TT}^{\Lambda} \equiv \frac{\sigma^{(p^{\uparrow}p \to \Lambda^{\uparrow}X)} - \sigma^{(p^{\uparrow}p \to \Lambda^{\downarrow}X)}}{\sigma^{(p^{\uparrow}p \to \Lambda^{\uparrow}X)} + \sigma^{(p^{\uparrow}p \to \Lambda^{\downarrow}X)}} = \frac{d\delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$
$$d\delta\sigma^{\Lambda} \sim \boldsymbol{h_1}(\boldsymbol{x_1}) \otimes f_b(\boldsymbol{x_2}) \otimes \Delta\widehat{\sigma} \otimes \boldsymbol{\delta D}$$

PRD 102, (2020) 054002

TEMPLE UNIVERSITY® 12

Transversity

• Sivers, $\phi \rightarrow \phi_s$ • Collins, $\phi_s \rightarrow \phi_s - \phi_H$ • Collins-Like, $\phi_s \rightarrow \phi_s - 2\phi_H$ • IFF, $\phi \rightarrow \phi_s - \phi_R$ $A_{UT}^{\sin(\phi)} \sin(\phi) = \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)}$

 $\Box p^{\uparrow} + p \rightarrow Jet + h^{\pm} + X$

- Different modulations can be used to isolate various contributions
- o Other modulations also measured

 $\Box \ p^{\uparrow} + p \rightarrow h^{+}h^{-} + X$ $\circ \ \mathsf{IFF}$

RHIC Kinematics

provides large Q² coverage and broad x reach
 complimentary to SIDIS

STAR, PLB 780 (2018) 332

APS-GHP-2021, M. Posik

Transversity: Collins Asymmetry

Collins asymmetry

- \circ K^{\pm} and $p(\overline{p})$ also measured
- K^+ positive and similar magnitude as π^+ (within uncertainty)
- o Other azimuthal asymmetries also measured (Sivers, Collins-Like)
- Polarized FF more sensitive to j_T dependence

STAR, DIS 2021

Transversity: IFF and Spin Transfer

- $\Box \text{ IFF: } p^{\uparrow} + p \rightarrow \pi^{+}\pi^{-} + X$
 - Large asymmetry
 - Enhancement near ρ mass (~0.78 GeV/c²)
- **Spin transfer** D_{TT} : $p^{\uparrow} + p \rightarrow \Lambda^{\uparrow} + X$
- \circ STAR can measure Λ through the weak decay channel
 - $\Lambda \to p + \pi^-, \overline{\Lambda} \to \overline{p} + \pi^+$

STAR Forward Upgrade

□ STAR Forward Upgrade

- Tracking: Si disks and small Thin Gap
 Chambers
- Calorimetry: hadronic and

electromagnetic

- Ensure jet capability and charge-sign discrimination
- $\hfill\square$ Cover forward rapidity $2.5 < \eta < 4$

Data Taking

- $\circ \sqrt{s} = 510$ GeV transversely polarized p+p run in 2022
- Other data (p+p, p+A) taken in parallel with sPHENIX

Summary

RHIC is playing a critical and complementary role in resolving the structure of the proton

□ Investigating QCD Effects

- \circ A_N origin at forward rapidity
 - pp and pA collisions
- Constrain twist-3 correlation function (trigluon)
- Study Sivers effect using di-jets
- □ Transvers spin structure
 - $\,\circ\,$ Constrain transversity through Collins, IFF, and $D_{_{TT}}$ asymmetries

□ STAR forward physics program begins in 2022

□ Many new and exciting results to come!

Gluon Polarization

- Need to push sensitivity to lower x
 - 1. Higher center of mass energy: $x_g \propto s^{-\frac{1}{2}}$
- 2. Forward rapidity: $x_g \propto \exp(-\eta)$ APS-GHP-2021, M. Posik

18

TEMPLE

Gluon Polarization

- Dijets provide better control of underlying partonic kinematics
 - Better constraint of the shape of $\Delta g(x)$ functional form
 - More forward production is sensitive to lower x (down to ~0.01)
 - Including **STAR EEMC** allows sensitivity to **x** > **0.004** (analysis of high stat. 2013 data set in progress)

19

TEMPLE

UNIVERSITY

Gluon Polarization

□ Higher center of mass pushes to lower x > 0.02

- Pions and photons provide complimentary probes
- Charged pions measured by PHENIX
- Direct photon sensitive to gluon polarization
 - \circ *qg* → *γq* (no hadronization)

PHENIX, PRD 102 (2020) 032001

Isolated direct photon A 0.04 p̃+p̃ √s = 510 GeV, |η| < 0.25 0.02 DSSV14 A_{LL} 3.9e-4 shift uncertainty from -0.02relative luminosity not included 6.6% scale uncertainty from polarization not included -0.04**PH**^{*}ENIX preliminary -0.06^{[]__}5 20 10 15 p_⊤ [GeV/c] TEMPLE

PHENIX, RAUM 2020

20

Quark Helicity

Sea quark helicity distributions

- Not known as well as the valence quarks
- Still not well constrained from experiment, in particular the strange quark

Polarized Λ hyperons are sensitive to the strange quark helicity distribution

- \circ contain constituent strange quark which is expected to carry majority of Λ spin.
- $\circ~$ Can be produce in polarized proton collisions

$$\vec{p} + p \to \vec{\Lambda} + X$$

Quark Helicity

$$D_{LL}^{\Lambda} \equiv \frac{\sigma^{(p^+p \to \Lambda^+ X)} - \sigma^{(p^+p \to \Lambda^- X)}}{\sigma^{(p^+p \to \Lambda^+ X)} + \sigma^{(p^+p \to \Lambda^- X)}} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$

 $d\Delta\sigma^{\Lambda} \sim \Delta f_{a}(x_{1}) \otimes f_{b}(x_{2}) \otimes \Delta\widehat{\sigma} \otimes \Delta D$

- $\circ~$ STAR can measure Λ through the weak decay channel
 - $\Lambda \rightarrow p + \pi^-, \overline{\Lambda} \rightarrow \overline{p} + \pi^+$
- Longitudinal spin transfer, D_{LL} , provides sensitivity to strange quark helicity distribution and polarized fragmentation functions.
- \circ New STAR measurements consistent with previous.
- $\circ D_{LL}$ found to be small

