Color charge correlations in the proton on the light front

Adrian Dumitru Baruch College \& CUNY Grad School

* Color charge correlators (and dipole scattering amplitudes) from the LFwf
talk based on collaborations with
H. Mäntysaari, R. Paatelainen: 2103.11682
R. Paatelainen: 2010.11245
T. Stebel, V. Skokov: 2001.04516
T. Stebel: 1903.07660
wikipedia
G. Miller, R. Venugopalan: 1808.02501

What's that?

MV-like charge correlators :

$$
\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right)\right\rangle=g^{2} \mu^{2} \delta^{a b}(2 \pi)^{2} \delta\left(\vec{q}_{1}+\vec{q}_{2}\right), \quad\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right)\right\rangle=0
$$

(note: μ^{2} a positive constant)
"impact parameter dependent" MV:
$\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right)\right\rangle=g^{2} \mu^{2} \delta^{a b} \int d^{2} b e^{-i\left(\vec{q}_{1}+\vec{q}_{2}\right) \cdot \vec{b}} T_{p}(b)$
proton :
$\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right)\right\rangle \sim g^{2} \delta^{a b} G_{2}\left(\vec{q}_{1}, \vec{q}_{2}\right)$

LO diagrams:

1-body GTMD / Wigner
$\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right)\right\rangle_{C=-} \sim g^{3} d^{a b c} G_{3}^{-}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)$
$\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right)\right\rangle_{C=+} \sim i g^{3} f^{a b c} G_{3}^{+}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)$

Motivation :

1) Two- (and three-) body correlations in the proton on the light cone at $x \sim 0.1-0.01$ b-dependence, q_{T} dependence, angular dependence (!)
2) Initial conditions for small-x evolution:
nice fits to HERA $\mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ from r.c. \& NLO BK / JIMWLK evolution:

- r.c. BK: Albacete et al, PRD 80 (2009), EPJ-C 71 (2011),

Mäntysaari \& Schenke, 1806.06783

- coll. improved BK: Iancu et al, PLB 750 (2015), Ducloue et al, 1912.09196, Beuf, Hänninen, Lappi, Mäntysaari, 2007, 2008

However,

- ad hoc initial conditions at $\mathrm{x}_{0}=0.01$, parameters adjusted so that BK fit is optimal
- how do they depend on x_{0} ? (important for NLO BK; Ducloue et al, 1902.06637)
- no b, r*b dependence (sometimes modelled via MV)

Our goal is to relate (x-dependent) initial condition to light-front w.f. of proton, take advantage of "proton imaging" at EIC $\rightarrow N_{0}(\vec{r}, \vec{b} ; x)$

The proton on the light front

The proton on the light front (valence quark Fock state; L.C. time $\mathrm{x}^{+}=0$)

$$
\begin{aligned}
|P\rangle= & \frac{1}{\sqrt{6}} \int \frac{d x_{1} d x_{2} d x_{3}}{\sqrt{x_{1} x_{2} x_{3}}} \delta\left(1-x_{1}-x_{2}-x_{3}\right) \int \frac{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}{\left(16 \pi^{3}\right)^{3}} 16 \pi^{3} \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}\right) \\
& \times \psi\left(k_{1}, k_{2}, k_{3}\right) \sum_{i_{1}, i_{2}, i_{3}} \epsilon_{i_{1} i_{2} i_{3}}\left|p_{1}, i_{1} ; p_{2}, i_{2} ; p_{3}, i_{3}\right\rangle \\
& \\
& \\
& \text { P. Lepage \& Brodsky, 1979 - } \\
& \text { Brodsky, Pauli, Pinsky, PR (1998) }
\end{aligned}
$$

* Fock space amplitude ψ is gauge invariant, universal, and process independent
* encodes the non-perturbative structure of hadrons (QCD eigenstates)
\rightarrow Evaluate color charge $\bar{q} \gamma^{+} t^{a} q$ correlators explicitly!

$<\rho^{\mathrm{a}} \rho^{\mathrm{b}}>$ correlator

$$
\rho^{a}(\vec{x})=g\left(t^{a}\right)_{i j} \int \mathrm{~d} x^{-} \bar{\psi}_{i}(x) \gamma^{+} \psi_{j}(x)
$$

$$
\begin{aligned}
\left\langle\rho^{a}(\vec{q}) \rho^{b}(\vec{k})\right\rangle_{K_{\perp}}= & g^{2} \operatorname{tr} t^{a} t^{b} \int\left[d x_{i}\right]\left[d^{2} p_{i}\right] \\
& \left\{\psi^{*}\left(\vec{p}_{1}+\left(1-x_{1}\right) \vec{K}_{T}, \vec{p}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right)\right. \\
& \left.-\psi^{*}\left(\vec{p}_{1}-\vec{q}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{k}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right)\right\} \\
& \psi\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}\right) \\
\sim & g^{2} \delta^{a b} G_{2}(\vec{q}, \vec{k}) \quad\left(\vec{q}+\vec{k}+\vec{K}_{T}=0\right)
\end{aligned}
$$

Numerical results for G_{2} correlator at LO

(using Brodsky \& Schlumpf LFwf)

- depends on b as well as on $q_{12}=q 1-q 2$ (resp. r)
- and on their relative angle
- note: small b is large K_{T}, "cat's ears" dominates !

${ }^{*} \mathrm{G}_{2}, \mathrm{G}_{3}$ are n -body GTMDs, compare to 1 -body quark density (thickness func.)

Now to $\left|\mathrm{P}>\sim \psi_{\mathrm{qqq}}\right| \mathrm{qqq}>+\psi_{\mathrm{qqqg}} \mid \mathrm{qqqg}>$

computed in perturbation theory, 1-gluon emission / exchange, w/o employing small-x approximation

NLO color charge correlators

notes:

* soft \& collinear div.
* UV divergences cancel
* Ward satisfied

The effect of adding the gluon:

Color charge correlator exhibits angular dependence:

* band $=$ variation of coll. regulator $0.1-0.4 \mathrm{GeV}$
* sign and magnitude of $<\cos 2 \theta>=v_{2}$ changes drastically with b, q_{12}

From color charge correlator to dipole scattering amplitude :

$$
\begin{aligned}
N(\vec{r}, \vec{b})= & -g^{4} C_{F} \int_{\vec{q}, \vec{K}} \frac{\cos \vec{b} \cdot \vec{K}}{q^{2}(\vec{q}+\vec{K})^{2}} \\
& {\left[\cos \left(\vec{r} \cdot\left(\vec{q}+\frac{1}{2} \vec{K}\right)\right)-\cos \left(\frac{\vec{r} \cdot \vec{K}}{2}\right)\right] G_{2}(\vec{q},-\vec{q}-\vec{K}) }
\end{aligned}
$$

Azimuthal anisotropy of dipole scatt. amplitude

If the color charge correlator is simply proportional to the "proton shape function" $\left\langle\rho^{a}(\vec{x}) \rho^{b}(\vec{y})\right\rangle \sim \delta^{a b} \mu^{2}(\vec{b}) \delta(\vec{x}-\vec{y})$
then $N(\vec{r}, \vec{b})=f(r, b)\left(1+c r^{2} b^{2} \cos 2 \theta\right)$ at small r , b ; with $c>0$!
e.g. A. Rezaeian \& E. Iancu, 1702.03943 Kovner \& Lublinsky, 1211.1928
E. Levin \& A. Rezaeian, 1105.3275

Summary

* color charge correlators $<\rho^{2}>,<\rho^{3}>$ etc provide insight into n-body correlations in the proton.
Many-body diagrams dominant at high $|t|$ or small b
* $<\rho^{2}>$ very different from MV model at small b (cat's ears !)
* Explicit relations to LFwf of the proton
* initial conditions for (NLO) BK incl. $b, \vec{r} \cdot \vec{b}$, x dependence (and C-odd contribution from 3 g exchange)
* Angular dependence of $N(\vec{r}, \vec{b})$ appears to be quite different from models assuming $<\rho^{2}>\sim T_{p}(b)$;

$$
v_{2}=\left\langle\cos 2 \theta_{\vec{r}, \vec{b}}\right\rangle<0!
$$

Backup Slides

NLO BK: evolution in terms of target rapidity (i.e. in x) :

B. Ducloué et al: 1902.06637

$$
\begin{align*}
\frac{\partial \bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)}{\partial \eta}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \Theta\left(\eta-\delta_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\right)\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}\left(\eta-\delta_{\boldsymbol{x} \boldsymbol{z} ; r}\right) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}\left(\eta-\delta_{\boldsymbol{z} \boldsymbol{y} ; r}\right)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)\right] \\
& -\frac{\bar{\alpha}_{s}^{2}}{4 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}(\eta) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}(\eta)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)\right] \\
& +\frac{\bar{\alpha}_{s}^{2}}{2 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{z} \mathrm{~d}^{2} \boldsymbol{u}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[\ln \frac{(\boldsymbol{u}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}+\delta_{\boldsymbol{u} \boldsymbol{y} ; r}\right] \bar{S}_{\boldsymbol{x} \boldsymbol{u}}(\eta)\left[\bar{S}_{\boldsymbol{u} \boldsymbol{z}}(\eta) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}(\eta)-\bar{S}_{\boldsymbol{u} \boldsymbol{y}}(\eta)\right] \\
& +\bar{\alpha}_{s}^{2} \times \text { "regular", } \tag{6.4}
\end{align*}
$$

non-local in rapidity, involves S at rapidities $\eta<\eta_{0}=\log 1 / x_{0}$!

"Impact parameter dependent MV", version by Kovner \& Skokov

A. Projectile averaging

We will perform the averaging over the projectile charge density ρ using the MV model, which is equivalent to pairwise Wick contraction of ρ with the basic "propagator"

$$
\begin{equation*}
\left\langle\rho^{a}(\underline{p}) \rho^{b}(\underline{k})\right\rangle_{\rho}=\mu^{2}(\underline{p}, \underline{k}) \delta^{a b} . \tag{5}
\end{equation*}
$$

In the original MV model the function μ^{2} is taken to be proportional to $\delta^{2}(\underline{p}+\underline{q})$. This form assumes translational invariance in the transverse plane. Since we wish to explore the dependence on the finite size and shape of the projectile, we generalize it in the following way

$$
\mu^{2}(\underline{p}, \underline{k})=\mu^{2}(\underline{p}+\underline{k}) F\left(\frac{(\underline{p}-\underline{k})^{2}}{\Lambda^{2}}\right)
$$

$\mathrm{G}_{2}(\mathrm{p}, \mathrm{k})$ does not factorize

This factorized form albeit not generic, but is intuitive and we believe captures the main features of the projectile charge distribution. The function $\mu^{2}(\underline{p}+\underline{k})$ arises as a Fourier transform of the charge density in the transverse plane

$$
\begin{equation*}
\mu^{2}(\underline{p})=\int d^{2} b e^{i \underline{p} \underline{b}} \mu^{2}(\underline{b}) . \tag{7}
\end{equation*}
$$

Thus the coordinate space density profile is directly reflected in $\mu^{2}(\underline{p})$. Naturally, we expect this function to vanish for momenta much greater than the inverse of the linear dimension of the projectile R. The spatial eccentricity will also be directly encoded in μ^{2}. The numerical calculations are performed for a Gaussian profile

$$
\mu^{2}(\underline{b})=C e^{-\frac{b_{1}^{2}}{a^{2} R^{2}}} e^{-\frac{a^{2} b_{2}^{2}}{R^{2}}} .
$$

should be $=0$ (for $\mathrm{p}=\mathrm{k}$) due to Ward id.

Note that this way of introducing eccentricity preserves the area of the projectile, and therefore the single inclusive gluon production cross section.

Message: we should not identify charge correlation with 1-body density !

$$
\text { fig. } 3 \mathrm{c}=\frac{g^{4}}{12 \cdot 16 \pi^{3}} \operatorname{tr} T^{a} T^{b} \int\left[\mathrm{~d} x_{i}\right] \int\left[\mathrm{d}^{2} k_{i}\right] \Psi_{q q q}\left(x_{1}, \vec{k}_{1} ; x_{2}, \vec{k}_{2} ; x_{3}, \vec{k}_{3}\right)
$$

$$
\int_{x}^{\min \left(x_{1}, 1-x_{2}\right)} \frac{\mathrm{d} x_{g}}{x_{g}}\left(1-\frac{z_{1}+z_{2}}{2}+\frac{z_{1} z_{2}}{6}\right) \sqrt{\frac{x_{1}}{x_{1}-x_{g}}} \sqrt{\frac{x_{2}}{x_{2}+x_{g}}}
$$

$$
\int \mathrm{d}^{2} k_{g} \frac{z_{1} \vec{p}_{1}-\vec{k}_{g}}{\left(z_{1} \vec{p}_{1}-\vec{k}_{g}\right)^{2}} \cdot \frac{z_{2} \vec{p}_{2}-\left(1-z_{2}\right)\left(\vec{k}_{g}-\vec{q}_{2}\right)}{\left(z_{2} \vec{p}_{2}-\left(1-z_{2}\right)\left(\vec{k}_{g}-\vec{q}_{2}\right)\right)^{2}}
$$

$$
\Psi_{q q q}^{*}\left(x_{1}-x_{g}, \vec{k}_{1}+x_{1} \vec{q}-\vec{q}_{1}-\vec{k}_{g}+x_{g} \vec{K} ; x_{2}+x_{g}, \vec{k}_{2}+x_{2} \vec{q}-\vec{q}_{2}+\vec{k}_{g}-x_{g} \vec{K} ; x_{3}, \vec{k}_{3}+x_{3} \vec{q}\right)
$$

(see arXiv:2010.11245 for details and other diagrams)

Aside: $\left\langle\rho^{\mathrm{a}} \rho^{\mathrm{b}} \rho^{\mathrm{c}}\right\rangle$ correlator (C odd part, LO)

 does not vanish (color charge fluct. not Gaussian) :$$
\left.\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right)\right\rangle_{K_{\perp}}\right|_{c=-} \equiv \frac{g^{3}}{4} d^{a b c} G_{3}^{-}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right),
$$

$\left.G_{3}^{-}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)=\int\left[d x_{x}\right] d p_{i}\right]$

$$
\begin{aligned}
& {\left[\psi^{*}\left(\vec{p}_{1}+\left(1-x_{1}\right) \vec{K}_{\perp}, \vec{p}_{2}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right)\right.} \\
& -\psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}+\vec{q}_{1}+\left(1-x_{2}\right) \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right) \\
& -\psi^{*}\left(\vec{p}_{1}+\vec{q}_{2}+\left(1-x_{1}\right) \vec{K}_{\perp}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right)
\end{aligned}
$$

$$
-\psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}+\vec{q}_{1}+\vec{q}_{2}+\left(1-x_{2}\right) \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right)
$$

$$
+2 \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}+\vec{q}_{1}+\vec{q}_{2}+\left(1-x_{2}\right) \vec{K}_{\perp}, \vec{p}_{3}-\vec{q}_{2}-x_{3} \vec{K}_{\perp}\right)
$$

$$
] \psi\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}\right)
$$

* 1-, 2- and 3-particle GTMDs, sum vanishes when either $q_{i} \rightarrow 0$
(Ward identities)
* "3-body" diagrams not (power-) suppressed when $\vec{q}_{1} \sim \vec{q}_{2} \sim \vec{q}_{3} \sim-\vec{K}_{T} / 3 \gg \Lambda_{\mathrm{QCD}}$ but actually dominant!

- magnitude for generic b, q comparable to G_{2}
- diverges for $b \rightarrow 0$ due to contribution from high K_{T}

$$
\left(\int \frac{\mathrm{d}^{2} K_{T}}{K_{T}^{2}} e^{-i \vec{b} \cdot \vec{K}_{T}}\right)
$$

$<\rho^{\mathrm{a}} \rho^{\mathrm{b}} \rho^{\mathrm{c}}>$ correlator (C even part)

$$
\begin{aligned}
\left.\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right)\right\rangle_{K_{\perp}}\right|_{\mathcal{C}=+} \equiv \frac{g^{3}}{4} i f^{a b c} G_{3}^{+}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right) \\
\begin{aligned}
G_{3}^{+}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)= & \int\left[d x_{i}\right] \int\left[d^{2} p_{i}\right] \\
& {\left[\psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-\vec{q}_{3}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right)\right.} \\
& -\psi^{*}\left(\vec{p}_{1}-\vec{q}_{2}-\vec{q}_{3}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}-\vec{q}_{1}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right) \\
& +\psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{3}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right) \\
& -\psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-x_{1} \vec{K}_{\perp}, \vec{p}_{2}-\vec{q}_{3}-x_{2} \vec{K}_{\perp}, \vec{p}_{3}-x_{3} \vec{K}_{\perp}\right) \\
= & \quad G_{2}\left(\vec{q}_{1}+\vec{q}_{2}, \vec{q}_{3}\right)-G_{2}\left(\vec{q}_{1}+\vec{q}_{3}, \vec{q}_{2}\right)+G_{2}\left(\vec{q}_{1}, \overrightarrow{q_{2}}+\vec{q}_{3}\right)
\end{aligned}
\end{aligned}
$$

(like Reggeized 2-gluon exchange)
e.g. C. Ewerz, hep-ph/0103260,
hep-ph/0306137
$\mathrm{G}_{3}{ }^{+}$vanishes when $\mathrm{q}_{1} \rightarrow 0$ or
$\mathrm{q}_{3} \rightarrow 0$ but not for $\mathrm{q}_{2} \rightarrow 0$

$<\rho^{\mathrm{a}} \rho^{\mathrm{b}} \rho^{\mathrm{c}} \rho^{\mathrm{d}}>$ correlator

$$
\begin{aligned}
& \left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right) \rho^{c}\left(\vec{q}_{3}\right) \rho^{d}\left(\vec{q}_{4}\right)\right\rangle=g^{4} \int\left[d x_{i}\right] \int\left[d^{2} p_{i}\right] \psi\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}\right) \\
& \left\{\operatorname{tr} t^{a} t^{b} t^{c} t^{d} \psi^{*}\left(\vec{p}_{1}+\left(1-x_{1}\right) \vec{K}_{T}, \vec{p}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right)\right. \\
& +\left(\operatorname{tr} t^{a} t^{b} \operatorname{tr} t^{c} t^{d}-\operatorname{tr} t^{a} t^{b} t^{c} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{3}-\vec{q}_{4}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{c} \operatorname{tr} t^{b} t^{d}-\operatorname{tr} t^{a} t^{c} t^{b} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{3}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-\vec{q}_{4}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{d} \operatorname{tr} t^{b} t^{c}-\operatorname{tr} t^{a} t^{d} t^{b} t^{c}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{4}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-\vec{q}_{3}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& -\operatorname{tr} t^{a} t^{b} t^{c} t^{d} \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-\vec{q}_{3}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{4}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& -\operatorname{tr} t^{a} t^{b} t^{c} t^{d} \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-\vec{q}_{3}-\vec{q}_{4}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& -\operatorname{tr} t^{a} t^{b} t^{d} t^{c} \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-\vec{q}_{4}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{3}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& -\operatorname{tr} t^{a} t^{c} t^{d} t^{b} \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{3}-\vec{q}_{4}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{b} t^{c} t^{d}+\operatorname{tr} t^{a} t^{b} t^{d} t^{c}-\operatorname{tr} t^{a} t^{b} \operatorname{tr} t^{c} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{2}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{3}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{4}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{c} t^{b} t^{d}+\operatorname{tr} t^{a} t^{c} t^{d} t^{b}-\operatorname{tr} t^{a} t^{c} \operatorname{tr} t^{b} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{3}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{4}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{d} t^{b} t^{c}+\operatorname{tr} t^{a} t^{d} t^{c} t^{b}-\operatorname{tr} t^{a} t^{d} \operatorname{tr} t^{b} t^{c}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-\vec{q}_{4}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{3}-x_{3} \vec{K}_{T}\right) \\
& +\left(\operatorname{tr} t^{a} t^{b} t^{c} t^{d}+\operatorname{tr} t^{a} t^{d} t^{b} t^{c}-\operatorname{tr} t^{a} t^{d} \operatorname{tr} t^{b} t^{c}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-\vec{q}_{3}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{4}-x_{3} \vec{K}_{T}\right) \\
& +\left(t^{a} t^{b} t^{c} t^{d}+t^{a} t^{c} t^{d} t^{b}-t^{a} t^{b} t^{c} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{3}-\vec{q}_{4}-x_{3} \vec{K}_{T}\right) \\
& \left.+\left(t^{a} t^{b} t^{d} t^{c}+t^{a} t^{c} t^{b} t^{d}-t^{a} t^{c} t^{b} t^{d}\right) \psi^{*}\left(\vec{p}_{1}-\vec{q}_{1}-x_{1} \vec{K}_{T}, \vec{p}_{2}-\vec{q}_{2}-\vec{q}_{4}-x_{2} \vec{K}_{T}, \vec{p}_{3}-\vec{q}_{3}-x_{3} \vec{K}_{T}\right)\right\},
\end{aligned}
$$

where $\vec{K}_{T}=-\left(\vec{q}_{1}+\vec{q}_{2}+\vec{q}_{3}+\vec{q}_{4}\right)$
Note: $\quad \neq\left\langle\rho^{a}\left(\vec{q}_{1}\right) \rho^{b}\left(\vec{q}_{2}\right)\right\rangle\left\langle\rho^{c}\left(\vec{q}_{3}\right) \rho^{d}\left(\vec{q}_{4}\right)\right\rangle+$ perm.

Model LFwf for the proton (Brodsky \& Schlumpf, PLB 329, 1994)

$$
\begin{gathered}
\psi_{\text {H.O. }}\left(x_{1}, \vec{k}_{1} ; x_{2}, \vec{k}_{2} ; x_{3}, \vec{k}_{3}\right)=N_{\text {H.O. }} \exp \left(-\mathcal{M}^{2} / 2 \beta^{2}\right), \\
\psi_{\text {Power }}\left(x_{1}, \vec{k}_{1} ; x_{2}, \vec{k}_{2} ; x_{3}, \vec{k}_{3}\right)=N_{\text {Power }}\left(1+\mathcal{M}^{2} / \beta^{2}\right)^{-p} . \\
\mathcal{M}^{2}=\sum_{i=1}^{3} \frac{\vec{k}_{\perp i}^{2}+m^{2}}{x_{i}} \\
\mathrm{~m}=0.26 \mathrm{GeV}, \quad \beta=0.55 \text { for H.O. wf } \\
\mathrm{m}=0.263, \quad \beta=0.607, \quad \mathrm{p}=3.5 \text { for PWR wf }
\end{gathered}
$$

With these parameters they fit:

- proton radius $R^{2}=-\left.6 \frac{d F_{1}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}=(0.76 \mathrm{fm})^{2}$
- proton / neutron magnetic moments $1+F_{2}\left(Q^{2} \rightarrow 0\right)=2.81 /-1.66$
- axial vector coupling $g_{A}=1.25$

