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Spin at small-x

A lot of progress in perturbative approach to spin at small-x

Y. V. Kovchegov, D. Pitonyak and M. D. Sievert (16-19); T. Altinoluk, N. Armesto, G. Beuf, M. Martinez
and C. A. Salgado (2014);Y. Hatta, Y. Nakagawa, F. Yuan, Y. Zhao and B. Xiao (2017); G. A. Chirilli

(19-20); R. Boussarie, Y. Hatta and F. Yuan (2019); F. Cougoulic and Y. V. Kovchegov (19-20); T.

Altinoluk, G. Beuf, A. Czajka and A. Tymowska (2012)

Oscillations in g, at small-x:
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Two types of operators

Two different types of operators generating gluon helicity can be found in large- and small-x literature

Gluon helicity at large-x is defined as a matrix element of a
collinear operator:

e F* (2,0 ) F(x,0,)

Fix,z1) = /dz_emp+z[oo,z_]ngT,;(z_,zL)

at the same time at small-x it is associated with a polarized
dipole operator:
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Both operators are antisymmetric in transverse Lorentz indexes.

We want to better understand relation between two structure




NLO correction

One can expect a mixing between two operators at the NLO order at small-x

The result of calculation of a diagram has a structure D = C ® O(B), where B is the external field,

and C is a coefficient. We want to find the form of operator ©, and check whether an initial operator
mixes with another one.



Background field method

Background field method is a powerful framework for calculation of the Feynman diagrams
which allows to understand the operator structure of the external (background) fields

Matrix element of a product of operators:
P11O1(A) .. Ou(W)lp2) = [ DA, (A)O1(A) .. 04 (A) Ty, (A)eS0eP(

Separate different modes of the system A = C + B:

(P1|O1(A) ... On(A)|p2)

/DB \IJ /DC O1(C+B)...0,(C+B)e 7/SQCD(C+B)—"3SQCD(B)) W, (B)eiSQCD(B)

Abbott (1982)
/ QCD Lagrangian in the background B field:

We calculate the integral over C fields in the fixed

background of B fields SbQCD(Ca B) — SQCD(C T B) _ SQCD (B)



Gluon propagator in the background field

QCD Lagrangian in the background 5 field:
Svocp(C, B)

l background-Feynman gauge
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scalar interaction (scalar QED) “spin” term

The structure is similar to the one of the worldline approach
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One can use different gauges
for the “quantum” and
background fields. For the
background field we choose

B, = 0. Otherwise, it’s
perfectly arbitrary.

The result of computation of a
diagram D has a form

D =C® O(B)
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Collinear expansion of the gluon propagator

In the collinear approximation, k, > [, a typical deviation
from the light-cone direction is small: b; — 0

One can expand the background fields onto the light-cone:
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Bu(z) = Bu(y) + (. —y) " 0aBu(y) + ...

Balitsky, Braun (88-89)

In the case of a general field Bﬂ, the leading terms of the

expansion contains three types of operators of the
background field 5,: Wilson lines, F_;, and F;;

see Balitsky, Tarasov (15-16)
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New term, gives rise to the
small-x helicity evolution




NLO correction to the large-x gluon helicity operator
F_;

To calculate the NLO correction to the operator
€ij./~"ia($, OJ_).F]C'L(ZU, OJ_)
let’s start with a correlator

LZ?(/{, y1,x) =1 lim /<;2<AZ(/£)]:§($, Y1))

k2 —0

To get the NLO correction we need to
take a product of two such correlates
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Polarized DGLAP

Taking product of operators we find
that only £_, operator survives

67,](./76”’@ 01) ./76” (2,01)) \
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where F is a kernel. Introducing

variable pt F—z‘
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we can rewrite the equation as the
polarized DGLAP:
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Dipole structure at small-x

It’s not a surprise that £;; doesn’t contribute in the large- Fi (337 OL) /; (2,0
X regime (collinear emission). It’s assumed that there is a et F——=—====- *
large scale Q2 — 00, Which Is a reasonable assumption
at large-x
. o _ o  Current polarized DIS e/uy+p data: |1
However, in the small-x limit the scale Q2 IS finite. For 10" & Current polarized RHIC p+p data:
this reason contribution of higher order twists become
important, which can be described by dipole structures < 1
g
o
‘Fi(ajan-) 5§10
O = == = e e e - - - A 5
1
L @

lllI | | | | | | | | | /

o 107 '1'0-3 '1'0-2 o '1'0-1 1
]?($,OL)

Parton momentum fraction, X




NLO correction ar small-x
Fi (Qj, yJ_)

/

dipole size

Since Q2 s finite, the collinear expansion breaks down
and should be substituted with a resummation in a
localized background field (shock-wave).

The expansion contains both DGLAP-type terms,
constructed from £_;, and new terms with £,

free propagation
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Mixing of operators at small-x

Taking product of operators we find that

F;, do survive. In the small-x regime we
see a mixing between two operators
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Small-x helicity evolution

Evolution of the polarized dipole. The F; term in
the gluon propagator reproduces the known result

G=GCY +a,Kpra+Ksra,)®G

Y. V. Kovchegov, D. Pitonyak and M. D. Sievert (16-19);
see also G. A. Chirilli (2020)

However, there is a mixing with the DGLAP-type
evolution, I.e. transverse logs.



Single-Logarithmic Contribution to the small-x
helicity evolution

Helicity evolution at small-x:

G=G9 4 a,(Kpra+Ksra, +Kspa,)®G
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Double |ogarithm a, 10g2(1 / x), Y. Kovchegov, A. Tarasov, Y. Tawabutr, in preparation
dominates at small-x see next talk by Yossathorn (Josh) Tawabutr!
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Y. V. Kovchegov, D. Pitonyak and M. D. Sievert (16-19)



Conclusions

We study mixing between large-x and small-x gluon
helicity operators using the background field method

We calculate the NLO correction to the operators and
find that at large-x there is no such mixing and the
evolution is solely described by the polarized DGLAP
equation

AN ASSESSMENT OF
U'S.-BASED ELECTRON-ION

COLLIDER SCIENCE

However, we emphasize that in the small-x regime,

when Q2 Is small, the twist expansion breaks down
and different types of dipole-like operators appear in
the polarized scattering. We find that those operators
do mix with each other

We find that both DGLAP evolution and the small-x
helicity evolution contribute at small-x. However, the

latter describes resummation of «; log?(1/x) and
should dominate
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