Testing the limits of collinear factorization with a diquark spectator model

Alberto Accardi

Hampton U. and Jefferson Lab

GHP 2021

(based on: J. Guerrero, AA, 2010.07339)

Overview

JLab 12: extensive PDF, TMD, GPD program **HERMES, COMPASS**: kaons Heavier particles, ...

Revisiting Collinear Factorization at sub-asymptotic energy

- Freedom in parton virtuality choices
- Target and quark mass correction scheme
- Testing the kinematic approximations
- Testing the limits of Collinear Factorization
 - Expose role of transverse momentum corrections
- **Conclusions and outlook**

Collinear Factorization at sub-asymptotic energy

DIS at subasymptotic energies

Cannot neglect:

- Target, hadron masses vs. W^2 , Q^2
- Mismatch between final state partonic, hadronic masses

(see also Collins, Rogers, Stasto 2007)

- Respect "external" kinematics
- Localize, mimize approximations
- Carefully distinguish:
 - Pure kinematic approximations
 - Expansions around "collinear" momenta (sytematically improvable)

$$\Phi_q(p,k) = \int \frac{d^4\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle N(p) | \bar{\psi}_q(0) \psi_q(\xi) | N(p) \rangle$$

= "in line with" the target's 3D momentum (p^+, O_T)

Idea:

(1) Minimal approx. overall 4-momentum conservation:

$$2MW^{\mu\nu} \approx (2\pi)^3 \int d^4k \ d^4k' \ \text{Tr}\left[\Phi_q(p,k) \ \gamma^{\mu} \ \Xi(k') \gamma^{\nu}\right] \ \delta^{(4)}(\widetilde{k}+q-\widetilde{k'})$$

full momenta

only the parton light-cone "virtualities" are approximated (and choice postponed)

$$\widetilde{k}^{\mu} = \left(xp^{+}, \frac{v^{2}}{2xp^{+}}, k_{T}
ight)$$

 $\widetilde{k}^{\prime\mu} = \left(\frac{v^{\prime 2}}{2k^{\prime -}}, k^{\prime -}, k_{T}^{\prime}
ight)$

approximated

 \widetilde{k} and \widetilde{k}'

unapproximated leading and transv. momenta

(2) Let 6 integrations out of 8 act on correlators

 $k_T' = k_T$

because of the delta-functi

$$2MW^{\mu\nu} = 2 \int dx \, dk'^{-} \delta \left(x - \xi - \frac{v'^{2}}{2p^{+}k'^{-}} \right) \delta \left(\frac{v^{2}}{2xp^{+}} + q^{-} - k'^{-} \right) \qquad \text{approximation (step 1)}$$
$$\int d^{2}\mathbf{k_{T}} \operatorname{Tr} \left[\Phi_{q}(x, \mathbf{k_{T}}) \gamma^{\mu} J(k'^{-}, \mathbf{k_{T}}) \gamma^{\nu} \right]$$

$$\Phi_q(x, \boldsymbol{k_T}) \equiv \int dk^- \Phi_q(k) \quad \boldsymbol{\longleftarrow} \quad$$

$$J(k'^-, \boldsymbol{k'_T}) = \frac{1}{2} \int dk'^+ \Xi(k') \quad \boldsymbol{\longleftarrow} \quad$$

Quark-distribution TMD correlator

> TMD-inclusive jet correlator

Accardi & Signori, PLB 798 (2019) 134993 2005.11310

REMARK:

- k_T in the trace is not neglected but integrated over

(3) Expand the correaltors in "twists" ($k^+ \gg k_T \gg k^- \quad k'^- \gg k'_T \gg k'^+$)

LT: <u>as if quarks were on-shell, massless</u>, and collinear to proton, photon

$$\begin{split} \Phi_{q}(x, \boldsymbol{k_{T}}) &= \frac{1}{2}q(x, k_{T}^{2})\,\overline{n} + \frac{M}{2P^{+}} \Big[e(x, k_{T}^{2})\,\mathbb{I} + q^{\perp}(x, k_{T}^{2})\frac{k_{T}}{M} \Big] + \mathcal{O}\bigg(\frac{\mu^{2}}{(p^{+})^{2}}\bigg) \\ &\quad xe = x\,\widetilde{e} + \frac{m_{q}}{M}q \\ J(k'^{-}, \boldsymbol{k_{T}}') &= \frac{1}{2}\alpha(k'^{-})n + \frac{\Lambda_{\text{tw}}}{2k'^{-}} \Big[\zeta(k'^{-})\,\mathbb{I} + \alpha(k'^{-})\frac{k_{T}'}{\Lambda_{\text{tw}}} \Big] + \mathcal{O}\bigg(\frac{\mu^{2}}{(k'^{-})^{2}}\bigg) \begin{bmatrix} \text{Accardi \& Signori, \\ PLB 798 (2019) 134993 \\ 2005.11310 \end{bmatrix} \\ \alpha(k'^{-}) &= \frac{1}{2(2\pi)^{3}} \qquad \zeta(k'^{-}) = \frac{1}{2(2\pi)^{3}}\frac{M_{j}}{\Lambda_{\text{tw}}}, \ M_{j} = \mathcal{O}(\Lambda_{\text{tw}}) : \text{non-perturbative} \\ &\quad \text{dressed quark mass} \end{split}$$

analogous to unpolarized FF

(4) Integrate over kT (after all this is inclusive DIS!)

$$2MW^{\mu\nu} = \int \frac{dx}{x} \mathcal{H}^{\mu\nu}(x,\bar{x}) q(x)$$
$$q(x) = \int d^2 \mathbf{k_T} q(x,k_T^2) = \int d^2 \mathbf{k_T} dk^- \operatorname{Tr} \left[\frac{\gamma^+}{2} \Phi_q(p,k)\right]_{k^+=xp^+} \qquad \text{Collinear PDF}$$

Hard-scattering tensor:

as if quarks were on-shell, massless, and collinear to proton, photon....

$$\mathcal{H}^{\mu\nu}(x,\bar{x}) = x \frac{1}{4} \delta(x-\bar{x}) \operatorname{Tr}\left[\overline{n}\gamma^{\mu} n\gamma^{\nu}\right]$$
 gauge invariant: $q_{\mu}\mathcal{H}^{\mu\nu} = 0$

Light-cone fraction \bar{x} from δ^+, δ^- :

$$\bar{x} = \frac{\xi}{2} \left(1 + \frac{v'^2 - v^2}{Q^2} + \sqrt{\left(1 + \frac{v'^2 - v^2}{Q^2}\right)^2 + 4\frac{v^2}{Q^2}} \right)$$
$$= \xi \left(1 + \frac{v'^2}{Q^2} - \frac{v^2 v'^2}{Q^4} + \mathcal{O}\left(\frac{\mu^6}{Q^6}\right) \right)$$

...but evaluated at a generalized Nachtamann scaling variable

 v^2 only at order $1/Q^4 \implies$ can safely approximate $v^2 \approx 0$

accard1(a)Jlab.org

GHP 2021 – 13 Apr 2021

Testing CF in a di-quark spectator model

Testing massive CF in a spectator model

Use spectator model:

- Captures essential elements of QCD
- Known parameters, analytical calculations
- Full vs. factorized cross section; PDFs: calculated vs. fitted

Test the proposed extended CF scheme:

- Validity of kinematic approximations
- How far can we push in kinematics (large-x, small Q^2)

Full cross section at LO

Gauge invariance: need also quasi-elastic photon-proton scattering

Moffat et al, PRD 95 (2017)

Gauge invariant structure function decomposition

Guerrero, AA, 2010.07339

For example, transverse DIS str.fn. (similarly for others)

Full cross section at LO

Gauge invariance: need also quasi-elastic photon-proton scattering

Moffat et al, PRD 95 (2017)

RES: "excited" proton decay

Gauge invariant structure function decomposition

Guerrero, AA, 2010.07339

 Resonance contribution at large x cut by phase space, but:

 $F_T^{\rm INT} \propto \frac{1}{Q^2}$ can be fitted away

 Non negligible, negative INT contribution also at smaller x

Factorization and kinematic approximations (reprisal)

Factorized structure function:

$$F_T^{CF}(x_B, Q^2) = q(\bar{x})$$
 with $\bar{x} = \xi \left(1 + \frac{\bar{v}'^2}{Q^2} - \frac{\bar{v}^2 \bar{v}'^2}{Q^4} + O\left(\frac{\mu^6}{Q^6}\right)\right)$

 \square Choose initial state quark $v^2 = 0$

- Equivalent to limiting oneself to $O(1/Q^2)$

 \square Consider a sequence of approximations for \overline{x} :

Test #1: average internal kinematics

Full diagram:

$$\langle \mathcal{O} \rangle(x_B, Q^2) = \frac{\int_0^{k_{T,\max}^2} dk_T^2 \,\mathcal{O}(x_B, Q^2, k_T) \mathcal{F}_T^{\text{DIS}}(x_B, Q^2, k_T)}{\int_0^{k_{T,\max}^2} dk_T^2 \,\mathcal{F}_T^{\text{DIS}}(x_B, Q^2, k_T)}$$
where $k_{T,\max}^2 = \frac{(W^2 - (m_\phi + m_q)^2)(W^2 - (m_\phi - m_q)^2)}{4W^2}$

Factorized diagram:

$$\langle \mathcal{O} \rangle_{\rm CF}(x_B, Q^2) = \frac{\int_0^\infty dk_T^2 \,\mathcal{O}(x_B, Q^2, k_T) \mathcal{F}_T^{\rm CF}(x_B, Q^2, k_T)}{\int_0^\infty dk_T^2 \,\mathcal{F}_T^{\rm CF}(x_B, Q^2, k_T)}$$

– Momentum conservation broken in T direction: k_{τ} ranges to infinity

(Vital to put quark field on light-cone in PDF definitions!)

Test #1: average internal kinematics

Average parton light-cone momentum fraction x:

- Mass corrections necessary for stable ~95% approximation
- Transverse momentum accounts for remaining ~5%

Test #2: testing the CF limits

The PDF is analytically calculable in the model:

$$\begin{split} q(x) &= \int_{0} d^{2} \mathbf{k_{T}} \, dk^{-} \operatorname{Tr} \left[\frac{\gamma^{+}}{2} \Phi(p,k) \right]_{k^{+} = xp^{+}} = \int \frac{d^{2} \mathbf{k_{T}} \, dk^{-}}{(2\pi)^{4}} \operatorname{Tr} \left[\begin{array}{c} & & & & \\ & & & \\ \end{array} \right]_{k^{+} = xp^{+}} \\ &= \frac{g^{2}}{(2\pi)^{2}} \frac{\left[2(m_{q} + xM)^{2} + L^{2}(\Lambda^{2}) \right](1-x)^{3}}{24L^{6}(\Lambda^{2})} \\ & & & \text{where } L^{2}(\Lambda^{2}) = xm_{\phi}^{2} + (1-x)\Lambda^{2} - x(1-x)M^{2} \end{split}$$

Can compare factorized F_{τ}^{CF} vs. full F_{τ}^{DIS}

- Verify efficacy of kinematic approximations
- Determine magnitude of transverse momentum corrections

 $\Box \alpha^{\pm}$

Test #2: testing the CF limits

Mass corrections are essential, as before

 $\Box k_{\tau}$ corrections needed for max reach in x_{B}

- Medium x_{B} : controllable in CF at Higher Twist
- Large x_{B} : irreducible breaking of coll. factorization

Qiu, PRD 42 (1990) 30

Test #2: testing the CF limits

Breaking of factorization at large x_B

- Even with best *collinear* kinematic approx. ($\bar{x} = \xi_q$) F_{τ}^{CF} overestimates the full F_{τ}^{CF} at $x \gtrsim 0.6$
- $-x_{\rm R}$ threshold grows with Q^2

- Happens when ~10% of F_{T}^{CF} beyond $k_{T, max}$

Irreducible in CF

need TMD formalism to overcome

Conclusions and Outlook

Conclusions

Collinear Factorization can be extended to large x_B

- Carefully distinguish
 - Dynamical twist **expansion** (systematically improvable)
 - Kinematic approximations (localized to external legs, minimized)
- Obtain more freedom, adaptability to subasymptotic regimes

Testing in a diquark spectator model

Best collinear kinematic approx for "light" quarks:

 $\Rightarrow \bar{x} = \xi \left(1 + m_q^2 / Q^2 \right)$

- kT effects not negligible:
 - At medium/large xB

 \rightarrow controllable with HT power corrections

- At largest xB, irreducible breaking of CF
 - \rightarrow need TMD formalism for further progress

Outlook

Fit full F₇ pseudo-data

- Up to what x are fitted PDF ~ full PDFs ?
- Can fitted $1/Q^2$ correction:
 - control INT and isolate DIS ?
 - simulate k_{T} corrections at medium-large x_{B} ?
- Push analysis to NLO

Extend to heavy quarks

- Twist expansion around heavy fermions
- Kinematics with $v^2 = m_q^2$
- Include hadronization effects
 - simplified Lund model
- Mass corrections to TMD fctorization!

Proton "resonance"

Longitudinal structure function decompositions

- \Box At small x \rightarrow 0, gauge invariance imposes
 - $FL \rightarrow 0$ exactly
 - RES ~ INT ~ DIS : breakdown of factorization
 - non-DIS contrib. partly be simualted by "HT" x ~ s/Q2 term (since y →1 b/c of phase space)

Initial state light cone virtuality - 1

Average light cone virtuality:

- Quark is on the light cone at small x
- Farther and farther away as $x_{\rm B} \rightarrow 1$

Initial state light cone virtuality - 2

- ...but only gives very minor corrections to collinear kinematics
 - Because it only contributes starting at $O(1/Q^4)$

