Recent Quarkonia Results from PHENIX Experiment

Murad Sarsour
(for the PHENIX Collaboration)
Georgia State University

April 13, 2021

9th Workshop of the APS Topical Group on Hadronic Physics (GHP21)
Online
April 13-16, 2021
Motivation

• Measurements of quarkonia provide an excellent opportunity to explore QCD.
 • In the case of J/ψ, the charm quark mass is larger than the hadronization scale ⇒ NRQCD techniques can be used to provide access to hadronization.
 • J/ψ is copiously produced and decays to lepton pairs with high branching ratio

• Many J/ψ production models describe general features well, like p_T or rapidity distributions at mid-rapidity, but not as well at forward rapidity.

• Measuring finer details, like angular distribution (spin alignment) can provide an additional handle on studying production and hadronization mechanisms.
J/ψ Polarization

The decay angular distribution of the positive lepton in the $J/ψ$ rest frame is often parametrized as:

$$\frac{d\sigma}{d(cos \theta) d\phi} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_{\theta\phi} \sin 2\theta \cos \phi + \lambda_\phi \sin^2 \theta \cos 2\phi$$

λ_θ, $\lambda_{\theta\phi}$ and λ_ϕ are related to the density matrix elements and depend on kinematical variables and the definition of coordinate system.

- **Frame-invariant angular decay coefficient**

 $$\tilde{\lambda} = \frac{\lambda_\theta + 3\lambda_\phi}{1 - \lambda_\phi}$$

 - It is sensitive to the maximum angular asymmetry, or polarization.
Reference Systems

• The decay angular distribution is usually reported in one of 3 systems of axes, differing in the definition of the polarization axis (\hat{z}):

 • **Helicity (HX):** J/ψ momentum in lab frame (traditionally used in collider experiments)

 • **Gottfried-Jackson (GJ):** direction of h_1 or h_2 in J/ψ rest frame (typically used in fixed target experiments)

 • **Collins-Soper (CS):** bisector between h_1 and (-) h_2 directions in J/ψ rest frame (widely used in Drell-Yan measurements)

 \[v\lambda\] is sensitive to the maximum angular asymmetry, or polarization, independent of the \hat{z}-axis orientation of the reference frame.
The Relativistic Heavy Ion Collider (RHIC)

- RHIC is an extremely versatile machine, located at Brookhaven National Lab (BNL), that has collided a variety of collision species at various energies.
- PHENIX finished its last run in 2016.
The PHENIX Detector

PHENIX: optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 & |y|<0.35
➢ High-rate capability with emphasis on mass resolution & particle ID
➢ First level e&µ triggers

Central Arms:
• Y',J/ψ, ψ' → e⁺e⁻
• D → X+e
• ρ,ω,φ → e⁺e⁻, K⁺K⁻

Muon Arms:
• Y',J/ψ → µ⁺µ⁻
• D → X+µ
• ρ,ω,φ → µ⁺µ⁻

p, d, Cu, Au

µ⁺

µ⁻
e⁺
e⁻
Dilepton Mass Spectra at PHENIX

Uncorrelated background is calculated using the mixed-event method and subtracted before fitting.

Exponential function is used to fit the correlated background.
J/ψ Production at Forward Rapidity at $\sqrt{s} = 510$ GeV

- LO-NRQCD+CGC calculations overestimate the data at low p_T
- NLO-NRQCD calculations underestimate the data at high p_T while to some extent, are consistent with the data at intermediate p_T, 3–5 GeV/c.
 - Nonprompt J/ψ contribution is not included in NLO-NRQCD calculations

PRD101, 052006 (2020)
\(J/\psi\) Production at Forward Rapidity at \(\sqrt{s} = 510\) GeV

- \(\langle p_T^2 \rangle\) follows the increasing pattern versus \(\sqrt{s}\) established by several sets of data over a wide range of energies.
- PHENIX’s \(BR \frac{d\sigma}{dy}\) (1.2 < \(|y|\) < 2.2) is consistent with interpolated ALICE’s data.
J/ψ Production at mid-rapidity at $\sqrt{s} = 510$ GeV

NLO-NRQCD with leading relativistic corrections that includes CS and CO states (Mod.Phys.Lett.A 28, 1350027 (2013)) agrees with data within uncertainties.
J/ψ Polarization vs \(p_T \) at Mid-Rapidity

- Data consistent with no \(J/ψ \) polarization
- C-S frame measurement at low \(p_T \) not possible due poor acceptance
- NRQCD and CSM (\(\nu \to 0 \) limit of NRQCD) predict qualitatively different strong polarization
\(J/\psi \) Polarization vs \(p_T \) at Forward Rapidity

- \(\lambda \) is consistent among all frames and show strong polarization across all \(p_T \)
- NRQCD calculations consistent with \(\lambda_\theta \) results at high \(p_T \) while show strong deviation at low \(p_T \)
\(\lambda \) shows strong \(J/\psi \) polarization at forward rapidity

\(\lambda \) is largely negative at forward rapidity indicating longitudinal polarization
Summary & Conclusions

- PHENIX measured J/ψ production vs p_T, rapidity and p_T-integrated cross-section in p+p collisions at 200 and 510 GeV both at mid- and forward rapidities.
 - Cross-section’s \sqrt{s} dependence follows simple logarithmic trend from different measurements.
 - NRQCD calculations do not describe the data very well especially at forward-rapidity

- PHENIX measured J/ψ polarization in p+p collisions at 200 and 510 GeV both at mid- and forward rapidities.
 - The data are consistent with no polarization at mid-rapidity
 - Indication of negative polarization at forward rapidity with p_T dependence.
 - Various NRQCD-based predictions can not describe the data.
Backup
Pedagogical illustration of the decay angular distribution

$$W(\cos \theta, \varphi) \propto 1 + \left[\begin{array}{c} \lambda_\theta \cos^2 \theta \\ \lambda_\theta \varphi \sin 2\theta \cos \varphi \\ \lambda_\varphi \sin^2 \theta \cos 2\varphi \end{array} \right]$$

“transverse”/ “longitudinal” polarization

azimuthal anisotropy

Additionally, $\lambda_{\theta \varphi} \neq 0$ means that the distribution is “tilted” wrt the chosen axes.
The polarization depends on the frame

For $x_F = 0$ (or $y_{CM} = 0$) the CS and HX frames differ by a rotation of 90°

If the angular distribution shows a pure *transverse* polarization in the CS frame, e.g., then in the helicity frame we observe a smaller *longitudinal* polarization, together with some azimuthal anisotropy.
Theoretical overview

Polarization in pp collisions - test of quarkonium production mechanisms:

CSM – Color Singlet Model:
- Perturbative QCD, underestimates quarkonium production cross-sections
- **Transverse polarization**

CEM - Color Evaporation Model:
- Soft gluon emission from the cc-pair during hadronization randomizes spin and color
- **No polarization**

NrQCD – Non-relativistic Quantum Chromodynamics:
- Takes into account non-perturbative effects in quarkonium production
- Dominance of the gluon fragmentation mechanism for $p_t \gg M$, the fragmenting gluon is almost on-mass shell, and is therefore transversely polarized.
- The produced quarkonium inherits **transverse polarization at high p_t**

- Perturbative calculations only. The basic subprocess: $g(gg)_8 \rightarrow J/\psi$
- Cross sections are in agreement with CDF and RHIC experiments
- **Transverse polarization at small p_t, longitudinal polarization at high $p_t \gg M$.**
Previous J/ψ Measurements at PHENIX

Helicity Frame

- PHENIX $p+p$ $\sqrt{s}=200$ GeV
- HERA-B $p+(C,W)$ $\sqrt{s}=41.6$ GeV

Gottfried-Jackson Frame

- PHENIX $p+p$ $\sqrt{s}=200$ GeV
- HERA-B $p+(C,W)$ $\sqrt{s}=41.6$ GeV
- E771 $p+Si$ $\sqrt{s}=38.8$ GeV
- E866/NuSea $p+Cu$ $\sqrt{s}=38.8$ GeV (CS)