Elastic Electron Scattering From ³He and ³H Mirror Nuclei

Leiqaa Kurbany

On behalf of the E12-11-112 collaboration

9th Workshop of the APS Topical Group on Hadronic Physics

April 14, 2021

Talk Outline

- Physics motivation
- Experimental setup
- Data analysis
- Future work

Motivation and Mirror Nuclei

Mirror Muclei are pairs of nuclei in which the proton number in one equals the neutron number in the other and vice versa.

³H and ³He nuclei is the simplest pair of mirror nuclei.

Comparison of ³H and ³He mainly sensitive to difference in contributions from protons and neutrons.

 $\nu = E_0 - E'$ The energy lost by the incident electron during scattering.

 $E' = \frac{E_0}{1 + \frac{E_0}{M}(1 - \cos \theta)}$ Scattered electron's final

energy.

Form Factor

$$\begin{pmatrix} d\sigma/d\Omega \end{pmatrix}_{exp} = (d\sigma/d\Omega)_{Mott} |F(q^2)|^2 \\
\text{Experimentally}$$

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{exp.} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{F_{ch}^2 + \tau F_M^2}{1 + \tau} + 2\tau F_M^2 \tan^2(\frac{\theta}{2})\right] \\
\text{Resembluth Cross Section}$$

F_{ch} : Electric form factor F_M : Magnetic form factor

- $F_M(Q^2)$ describes the magnetic structure of the target and equals the magnetic moment of the target at $Q^2 = 0$ in units of the nuclear magneton.
- $F_{ch}(Q^2)$ describes the electric structure of the target and equals the electric charge of the target at $Q^2 = 0$ in units of elementary charge.

Charge Form Factor and Charge Radius

$$F(q^2) = \int e^{\frac{iq \cdot x}{\hbar}} \rho(x) d^3x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr$$

Recoil is negligible

- The validity of the Born approximation
- In non-relativistic limit

The charge distribution is spherically symmetric.

This procedure can be inverted to find the charge distribution of a target from its form factor.

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq \cdot x}{\hbar}} d^3 q$$

$$F(q^2) = 1 - \frac{1}{6} q^2 \langle r^2_{E(M)} \rangle + \frac{1}{5!} q^4 \langle r^4 \rangle - \cdots$$

$$\langle r^2 \rangle \equiv -6 \hbar^2 \frac{dF(q^2)}{dq^2} \bigg|_{q^2=0} \qquad \text{Mean Square of charge radii} \qquad \text{*Related to charge radius in infinite-momentum-frame} \qquad \text{GA Miller, PRL 99 112001 (2007)}$$

³H and ³He Comparison Charge Form Factor for

³H and ³He charge radii Minimize systematic uncertainties.

 ✓ Because there are better measurements for 3He, we can use a precise 3H/3He ratio measurement to help constrain the 3H data set.

Jefferson Lab.

J.Alcorn *et al.*, Nucl. Instr. Meth. A, 522 (2004).

Experiment E12-11-112

P. Solvignon, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople)

Experiment Configuration

- Beam current: 5µA
- Beam energy: 1.171 GeV
- Momentum: 1.128 GeV
 Electron beam
- Angle: 17 degree
- Q² = 0.11 GeV²
- Vertical Drift Chamber Position and angle of the electrons.
- Scintillator
 - Used for trigger or measure time of the event.
- Cherenkov & calorimeters Pion rejection.

target

LHRS

Jefferson Lab, Hall A

RHRS

111

Nuclear Targets

- Consisted of five identical aluminum cells
- Each cell carved from block of Al
- Each one was filled with different gas and sealed
- Each target cell has a cylindrical fluid space with a length of 25 cm and a diameter of 1.27cm
- Atmospheres pressure for ³H 13.75 (atm) ,³He 17.49(atm) and ¹H 35.03 (atm)

S. N. Santiesteban et al., Nucl. Instr. Meth. 940 (2019)351.

From Yield to The Cross Section

 $Yield = \frac{Number of Good Scattered Electrons}{Effective Luminosity}$

Effective Luminosity is the product of the number of incoming beam particles per unit time , the target particle density in the scattering material , and the target's thickness. Its unit [(area x time)–1].

Normalized Yield =
$$\frac{N_e \cdot ps}{Q \cdot \rho_a \cdot Boiling \cdot \epsilon_{tot} \cdot LT}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \frac{N_e \,.\, ps}{N_{in} \,.\, \rho \,.\, \Delta Z \,.\, LT \,.\, \epsilon_{tot}} \,\frac{1}{\Delta\Omega}$$

- N_e is the number of good events.
- *ps* is the prescale factor for the production trigger.
- Q is the charge with stable beam current.
- ρ_a is the effective area density of the target (g/cm²).
- *Boiling* is the ratio of the effective gas target density at given beam current comparing to no beam.
- ϵ_{tot} is the product of all efficiencies.
- *LT* is the computer livetime.

Selection of Good Electrons

Hydrogen Target

Target length cut

TCut vz = "fabs(L.tr.vz)<0.08";

Acceptance Cut

TCut dp = "fabs(L.tr.tg_dp)<0.035";

TCut phi = "fabs(L.tr.tg_ph)<0.025";

TCut theta = "fabs(L.tr.tg_th)<0.035";

Background Contamination

Tritium Target

Elastic Cross Section Monte Carlo What is SIMC

SIMC is a physics simulation Monte Carlo program primarily used by JLab's Halls A and C to

simulate electron scattering experiments.

Features

- ✓ SIMC contains the geometry of the Hall A spectrometers including their various apertures and the materials that comprise them.
- ✓ SIMC uses an event generator to create electrons which scatter from a given target and records their final states as they were viewed by a detector.
- ✓ SIMC Includes radiative effects, multiple scattering, ionization energy loss and particle decay.
- Our version of SIMC works Nuclear elastic for 1H, 3H, 3He and any other target requires an elastic cross section model.

Agreement between the data and SIMC for Hydrogen target

- ph ΰ Yield(1/μ C) 98741 98741 Entries Entries Yield(1/μ Data Mean -1.624e-05 -0.003282Mean 35 F Std Dev 0.02003 Std Dev 0.01421 -SIMC 30 25 10 8 6 4 2 20 E -8.06 -0.04 -0.02 0.02 0.04 0.06 -0.04 -0.02 0.02 0.06 0.04 XBJ Vield(1/μ C) 100 120 35 /ield(1/μ C) 98738 Entries 0.00+935 Entries Mean Mean 0.9815 Stu De / 0.0462 Std Dev 0.04588 30 25 80 20 60 15 10**|**-20 5E 0.75 -0.06 -0.04 -0.020.02 0.04 80.0 0.85 0.9 0.95 1.05 1.15 1.2 Z-vertex XBJ
- Shape agreement is good
- The resolution in XbJ slightly different
- The data Yield is 95 % of the SIMC Yield for 0.95< xbj< 1.1
- Present uncertainty ~5% and we expected uncertainty (~3%)

Agreement between the data and SIMC for ³He target

- ph Yield(1/μ C) .c Yield(1/μ C) 12723 Entries 12723 Entries Data 0.0003914 -0.00647 Mean Mean · 3.5 F Std Dev 0.01999 Std Dev 0.01349 - SIMC 1.5 1.5 0.5 0.03 0.0 -0.03 0.03 -0.02-0.01 0.02 0.04 XBJ Yield(1/ μ C) Yield(1/μ C) 12723 Entries 12723 0.00177 2.964 Mean 0.04591 Std Dev 0.1204 td Dev 2.5 1.5 0.5 -0.06 -0.04 -0.02 0.02 0.04 3.1 Xbi z vertex
- Shape agreement is good
- The resolution in XbJ slightly different.
- The data Yield is 93 % of the SIMC for 2.6< xbj <3.3
- Present uncertainty ~5% and we expected uncertainty (~3%)

H & ³He Preliminary Cross sections

Expected Results

This new data point will improve global fits and can be compared to the 3H/3He ratio for the experiments that have tried extracting the charge radii of 3H and give inconsistent results.

Thank you

Dr. Elena Long (Advisor) P. Solvignon, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) Tritium group's members.

Backup Slides

Rosenbluth Separation Technique

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[F_{ch}^2 + \frac{\tau}{\epsilon}F_M^2\right] (1+\tau)^{-1}$$

It is valid at low Q^2 when the cross section is dominated by F_{ch} and is mostly insensitive to F_M .

$$\left(\frac{d\sigma}{d\Omega}\right)_{r} = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{exp}}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} \epsilon(1+\tau) = \left[\epsilon F_{ch}^{2} + \tau F_{M}^{2}\right]$$

 $\epsilon^{-1} = \{1 + 2(1 + \tau)tan^2(\theta/2)\}$

• we need at least 2 cross section measurements at the same Q^2 (but different angles) to try and separate F_{ch} and F_{M} .

Example of a Rosenbluth separation technique using data for elastic e $-{}^{3}$ He at Q^{2} = 55.1 fm⁻²

S. K. Barcus, Ph.D. thesis, College of William & Mary, 2019. ²³

microscopic level forces are caused by the exchange of force-carrying particles. For example the Coulomb force between two electrons is mediated by excitations of the electromagnetic field – i.e. photons

Let the incoming electron have momentum p and the outgoing scattered electron have momentum p. For elastic scattering, the energy of the electron is unchanged E' = E The electron has picked up a change of momentum $\Delta p = p' - p$ from absorbing the virtual photon, but absorbed no energy. So the photon must have energy and momentum

Charge Form Factor and Charge Radius

$$F(q^2) = \int e^{\frac{iq \cdot x}{\hbar}} \rho(x) d^3x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr$$

• The charge distribution is spherically symmetric.

This procedure can be inverted to find the charge distribution of a target from its form factor. $1 \qquad f$

$$\rho(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{\frac{-iq \cdot x}{\hbar}} d^3 q$$

For a hard sphere of charge the charge radius, R, is roughly given by

$$R \approx \frac{4.5\hbar}{q}$$

Charge Form Factor and Charge Radius

$$e^{i\frac{qr}{\hbar}} = \cos\left(\frac{qr}{\hbar}\right) + i\sin\left(\frac{qr}{\hbar}\right)$$
At very low q² $R \ll \frac{\hbar}{q} \implies \frac{Rq}{\hbar} \ll 1$ $i\sin\left(\frac{Rq}{\hbar}\right) \to 0$

$$e^{i\frac{qr}{\hbar}} = \cos\left(\frac{qr}{\hbar}\right)$$

_

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \qquad q \cdot r = |q||r|\cos(\omega)$$

$$F(q^2) = \int_0^\infty \int_{-1}^1 \int_0^{2\pi} \rho(r) \left(1 - \frac{1}{2} \frac{|q| |r| \cos(\omega)}{\hbar}\right) r^2 d\phi \ d\cos(\omega) \ dr$$

3He and 3H Target cells

3He and 3H Target cells

The target was 3H dissolved in a thin titanium and copper metal foil, made at the Isotope Division of Oak Ridge National Laboratory. The copper was evaporated to a thickness of 1.97 mg/cm on a 2.18 mg/cm titanium foil in order to improve the thermal conductivity. The oil was then warmed to about 450'C and exposed to H2 gas.

The result is a material which is partly a solution of gaseous hydrogen in the solid metal and partly the compound TiH2.

Unfortunately, the foil was wrinkled and consequently its absolute 3H areal density was not known.