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Motivation and Mirror Nuclei

MET‘T’OT’ MM&L@& are pairs of nuclei in which the proton number in

one equals the neutron number in the other and vice versa.
" 3H
- W

3H and 3He nuclei is the simplest pair of mirror nuclei.




Elastic Electron

Elastic Scattering
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= (da/dQ)more IF(q*)|°

Experimentally

(do/dQ)exp=

Form Factor

Electron Cross section from

do do Fczh + TFI\%I 6 Point like particle
— = (— + 2TF4tan? (=
( d. )exp, (dQ)Mott [ 1471 utan® () 0’
Rosenbluth Cross Section t= /4-M2

F., : Electric form factor F.,: Magnetic form factor

* Fy(Q?) describes the magnetic structure of the target and equals the magnetic
moment of the target at Q? = 0 in units of the nuclear magneton.

* F_,(Q?) describes the electric structure of the target and equals the electric charge of
the target at Q2 = 0 in units of elementary charge.



Charge Form Factor and Charge Radius

e———

e sin r h *  Recoilisnegligible
F(qQ) — /e qh p(x)dggj ﬂ)élﬂ'/p(’l“) (|q‘ / )rzdr *  Thevalidity of the

’CI’T/h Born approximation
o — — ° In non-relativistic
The charge distribution is limit

spherically symmetric.

This procedure can be inverted to find the charge distribution of a target from its form
factor.

p(r) = (2;)3 /F(qQ)e_ig'md%

1 1
F(g)=1- 5 a*{r*gamn) +§q4(7”4> -

dF (q*)

(r?) = —6 h? P

Mean Square of charge radii *Related to charge radius in

infinite-momentum-frame

q2 =0 GA Miller, PRL 99 112001 (2007)




"H and *He Comparison
Charge Form Factor for 3H

& r e o v' The comparison of the
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North Linac
(400 MeV, 20 cryomodules) -

Injector
45 MeV, 2 1/4 cryomodules)

Helium !
refrigerator \

South Linac

Injector- (400 MeV, 20 cryomodules)

— elements

J.Alcorn et al, Nucl. Instr. Meth. A, 522 (2004).
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Experiment K12-11-112

P. Solvignon, J Arrington, D .B.Day,
D. Higinbotham, Z. Ye (Spokepeople)

Experiment Configuration

° Beam current: S5pA Al
*  Beam energy: 1.171 GeV B et
*  Momentum: 1.128 GeV EleCtm{\ pea
*  Angle: 17 degree

. Q2 =0.11 GeV?
e Vertical Drift Chamber

Position and angle of the electrons.
e Scintillator
Used for trigger or measure time of the
event.
e Cherenkov & calorimeters
Pion rejection.

N Calorimeter

Cherenkov



Nuclear Targets

Tritium

Deuterium

Hydrogen

Helium-3

Empty Cell

25 cm Dummy
T T  optics

* Consisted of five identical aluminum cells

* Each cell carved from block of Al

* Each one was filled with different gas and sealed

* Each target cell has a cylindrical fluid space with
a length of 25 cm and a diameter of 1.27cm

* Atmospheres pressure for 3H 13.75 (atm) ,3He

17.49(atm) and 1H 35.03 (atm)
S. N. Santiesteban et al, Nucl. Instr. Meth. 940 (2019)351. 10




From Yield to The Cross Section

Number of Good Scattered Electrons

Yield =

Ef fective Luminosity

Effective Luminosity is the product of the number of incoming beam particles per unit time, the target
particle density in the scattering material , and the target’s thickness. Its unit [(area x time)-1].

N, .ps

Normalized Yield = —
Q .pq - Boiling. €to¢- LT

(da) N, .ps 1

dQ) expy  Nip.p .AZ.LT.€r0r AQ

(da) ~ Yield
dQ) e, AN

* N, is the number of good events.
° ps is the prescale factor for the production trigger.

Q is the charge with stable beam current.

p, is the effective area density of the target (g/cm?).

Boiling is the ratio of the effective gas target
density at given beam current comparing to no beam.

€0t IS the product of all efficiencies.

LT is the computer livetime.
11



Selection of Good Electrons
Hydrogen Target

TCutvz =
"fabs(L.tr.vz)<0.08";

TCutdp =
"fabs(L.tr.tg_dp)<0.035";

TCut phi =
"fabs(L.tr.tg_ph)<0.025";

TCut theta =
"fabs(L.tr.tg_th)<0.035";

Z-vertex
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PID CUt Cherenkov Cut >1500 Trigger 1=5; & S,

Energy/ Momentum Cut >. 0.7 Trigger 2=S; & S, & Cherenkov
Trigger 3=S S, & Cherenkov
Cherenkov Calorimeter &8 1 115,
Hydrogen Target

Hydrogen Target T
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L.pri2.trx
—  Live time: Ave. 0.90

Data Correction | ° Triggerl Efficiency: Ave. 0.99
¢ - VDC Efficiency: Ave. 0.97
actors - Cherenkov Efficiency Ave. 0.99

.+ Pion Rejecters Efficiency Ave. 0.99
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S. N. Santiesteban et al, Nucl. Instr. Meth. 940 (2019).
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*  The machining the cell from a single
piece of aluminum and the end piece 10
is very hard to reproduce.

* The scattering from the electrons in
the upstream endcap is also shatter 102
from the gas particles in the gas
targets, which does not happen in the =5 eyl e
empty cells. Z- vertix

Tritium Target




Background Contamination

Tritium Target
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Elastic Cross Section Monte Carlo
What ts SIMC

SIMC is a physics simulation Monte Carlo program primarily used by JLab’s Halls A and C to

simulate electron scattering experiments.

Feabures

v SIMC contains the geometry of the Hall A spectrometers including their various apertures
and the materials that comprise them.

v SIMC uses an event generator to create electrons which scatter from a given target
and records their final states as they were viewed by a detector.

v SIMC Includes radiative effects, multiple scattering, ionization energy loss and particle decay.

v Our version of SIMC works Nuclear elastic for 1H, 3H, 3He and any other target requires

an elastic cross section model.
16



Agreement between the data and SIMC for Hydrogen target

o 20 Entries = 98741 o 40p Entries 2 98741
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Agreement between the data and SIMC for SHe target

Shape agreement is good

The resolution in XbJ slightly
different.

The data Yield is 93 % of the
SIMC for 2.6< xbj <3.3

Present uncertainty ~5% and
we expected uncertainty (~3%)
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H & He Preliminary Cross sections
Correction Factor

do
A/ simc

~ 45 xBd
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H cross section: 5.175 + 0.0134 pb/sr 3He cross section: 1.427 + 0.0127 pb/sr

Preliminary Cross Section + statistical uncertainty onl 19




Expected Results

Charge Form Factor for 3H

At low Q? ~ 0.11 GeV/2

T [
E) 1 __ =—&— COLLARD 1965
G 3 H FCh3 : —>— Saskatchewan 1982
> H > 0.8 jg%
O °He Fch He i >1<.I
0.6—
Uncertainty ~1.5% in the RATIO i .
0.4 '
One data point at - g
° Beamenergy: 1.171 GeV 02— .
°  Momentum: 1.128 GeV - :
© Angle: 17 degree LI
Q% (GeV?)

—

This new data point will improve global fits and can be compared to the 3H/3He ratio for the
experiments that have tried extracting the charge radii of 3H and give inconsistent results.

T N
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Thank you

Dr. Elena Long (Advisor)
P. Solvignon, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople)

Tritium group’s members. '






Rosenbluth Separation Technique

Rosenbluth Separation Plot
(E) — ( ) [ + EF]%] (1 + T)—l x10'9 i
d)/ exp A/ pott € _ 6

It is valid at low Q? when the cross section is 5
dominated by F_, and is mostly insensitive to -
Fur- A
(d_a) '8‘%} ; 2
_ _ 2
(d_.(l)r = (@) e(1+1) = [chh + TFM] :
df) pott 2
e l={1+201+)tan*(8/2)} ih
« we need at least 2 cross section /g 0004 0 0807 08 05
measurements at the same Q? (but different  ¢p2 €

angles) to try and separate F_, and F,,
Example of a Rosenbluth separation technique using data for elastic e -*He at Q? = 55.1 fm
S. K. Barcus, Ph.D. thesis, College of William & Mary, 2019. 23



One and two photo exchangé'\ i

P

e-
\ .
E, = 0

Py, = Ap=p' —p. N\

e- P

One of the insights of subatomic physics is that at the e- P
microscopic level forces are caused by the exchange of

force-carrying particles. For example the Coulomb force

between two electrons is mediated by excitations of the

electromagnetic field —i.e. photons

Let the incoming electron have momentum p and the outgoing scattered electron have momentum p . For elastic
scattering, the energy of the electron is unchanged E’ = E The electron has picked up a change of momentum Ap =p’ -
p from absorbing the virtual photon, but absorbed no energy. So the photon must have energy and momentum

24



Charge Form Factor and Charge Radius

; — sin(\qlr/h) 9 * The charge distribution
F<q2) — /6 L p(:z:)d?’x u 47T/p(7“) ‘q’f/’/h redr is spherically symmetric.

This procedure can be inverted to find the charge distribution of a target from its form

factor. i it
p(T) (271_)3 / (a7 )e q

For a hard sphere of charge the charge radius, R, is roughly given by

4.5h
q

R



Charge Form Factor and Charge Radius

i qry . . 4qr
e h —cos(h) | lsm(h)

At very low g° R<<E j%<<1 isin(%)—)()
q
l_
e h =cos (—)
h
2 4 6
cos(x) = 1—x——|—:fl :g' + ... q-r = |q||r|cos(w)

/ / /2“ (1_1|q||r|;os< >>T2d¢ el



3He and 3H Target cells

3He gas
:

liquid
hydrogen

liquid Hy < \
\
a3 fan
E—.EE T windows
| & 5 =1 .
- bea_m) beam ;
ea 3
axch ] ~2H liquid
anger , /
- beam
position ~ C2
monitor TC s
3He gas —> -ﬁ
C4

A. Amroun et al. Nuclear Physics A579 (1994).



3He and 3H Target cells

The target was 3H dissolved in a thin titanium and copper metal foil, made at the Isotope
Division of Oak Ridge National Laboratory. The copper was evaporated to a thickness of 1.97
mg/cm on a 2.18 mg/cm titanium foil in order to improve the thermal conductivity.

The oil was then warmed to about 450'C and exposed to H2 gas.

The result is a material which is partly a solution of gaseous hydrogen in the solid metal and
partly the compound TiH2.

Unfortunately, the foil was wrinkled and consequently its absolute 3H areal density was not
known.



