Elastic Electron Scattering
 From ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ Mirror Nuclei

Leiqaa Kurbany

On behalf of the E12-11-112 collaboration

9th Workshop of the APS Topical Group on Hadronic Physics

April 14, 2021

Talk Outline

- Physics motivation
- Experimental setup
- Data analysis
- Future work

Motivation and Mirror Nuclei

Mirror nuclei are pairs of nuclei in which the proton number in one equals the neutron number in the other and vice versa.

${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ nuclei is the simplest pair of mirror nuclei.

Comparison of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ mainly sensitive to difference in contributions from protons and neutrons.

Elastic Electron Scattering

$Q^{2}=-q^{2}=4 E_{0} E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)$ Momentum Transferred to Target.
$x=\frac{Q^{2}}{2 M v} \quad \begin{aligned} & \text { Bjorken x (Normalizes 4-momentum-transfer to known } \\ & \text { masses). }\end{aligned}$
$v=E_{0}-E^{\prime}$ The energy lost by the incident electron during scattering.
$E^{\prime}=\frac{E_{0}}{1+\frac{E_{0}}{M}(1-\cos \theta)}$
Scattered electron's final energy.

- The kinetic energy of the scattering is conserved.
- The same particles are presented both before and after the scattering.
- we can be described the scattering by two variables the scattering angle θ, and the initial energy E_{0}.

Form Factor

$$
(d \sigma / d \Omega)_{e x p}=(d \sigma / d \Omega)_{M o t t}\left|F\left(q^{2}\right)\right|^{2}
$$

Experimentally

Electron Cross section from
$\left(\frac{d \sigma}{d \Omega}\right)_{\text {exp. }}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left[\frac{F_{c h}^{2}+\tau F_{M}^{2}}{1+\tau}+2 \tau F_{M}^{2} \tan ^{2}\left(\frac{\theta}{2}\right)\right]$

$$
\tau=Q^{2} / 4 M^{2}
$$

$F_{c h}$: Electric form factor
F_{M} : Magnetic form factor

- $\mathrm{F}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right)$ describes the magnetic structure of the target and equals the magnetic moment of the target at $\mathrm{Q}^{2}=0$ in units of the nuclear magneton.
- $\mathrm{F}_{\mathrm{ch}}\left(\mathrm{Q}^{2}\right)$ describes the electric structure of the target and equals the electric charge of the target at $\mathrm{Q}^{2}=0$ in units of elementary charge.

Charge Form Factor and Charge Radius

$$
H\left(q^{2}\right)=\int e^{\frac{i q \cdot x}{\hbar}} \rho(x) d^{3} x \xrightarrow{x \rightarrow r} 4 \pi \int \rho(r) \frac{\sin (|q| r / \hbar)}{|q| \gamma / \hbar} r^{2} d r
$$

The charge distribution is

- Recoil is negligible
- The validity of the

Born approximation
In non-relativistic
limit spherically symmetric.
This procedure can be inverted to find the charge distribution of a target from its form factor.

$$
\rho(r)=\frac{1}{(2 \pi)^{3}} \int F\left(q^{2}\right) e^{\frac{-i q \cdot x}{\hbar}} d^{3} q
$$

$$
\begin{array}{r}
F\left(q^{2}\right)=1-\frac{1}{6} q^{2}\left\langle r_{E(M)}^{2}\right\rangle+\frac{1}{5!} q^{4}\left\langle r^{4}\right\rangle-\cdots \\
\left\langle r^{2}\right\rangle \equiv-\left.6 \hbar^{2} \frac{d F\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0} \text { Mean Square of charge radii }
\end{array}
$$

${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ Comparison

Charge Form Factor for 3H

\checkmark The comparison of the ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ charge radii Minimize systematic uncertainties.
\checkmark Because there are better measurements for 3 He , we can use a precise $3 \mathrm{H} / 3 \mathrm{He}$ ratio measurement to help constrain the 3 H data set.
limited Data for ${ }^{3} \mathrm{H}$ At low Q^{2}

Jefferson Lab.

Experiment E12-11-112

P. Solvignon, J.Arrington, D.B.Day,
D. Higinbotham, Z. Ye (Spokepeople)

Experiment Configuration
Beam current: $5 \mu \mathrm{~A}$
Beam energy: 1.171 GeV
Electron beam
Angle: 17 degree
$\mathrm{Q}^{2}=0.11 \mathrm{GeV}^{2}$

- Vertical Drift Chamber

Position and angle of the electrons.

- Scintillator

Used for trigger or measure time of the event.

- Cherenkov \& calorimeters

- Consisted of five identical aluminum cells
- Each cell carved from block of AI
- Each one was filled with different gas and sealed
- Each target cell has a cylindrical fluid space with a length of 25 cm and a diameter of 1.27 cm
- Atmospheres pressure for ${ }^{3} \mathrm{H} 13.75$ (atm), ${ }^{3} \mathrm{He}$ 17.49(atm) and ${ }^{1} \mathrm{H} 35.03$ (atm)

From Yield to The Cross Section

$$
\text { Yield }=\frac{\text { Number of Good Scattered Electrons }}{\text { Effective Luminosity }}
$$

Effective Luminosity is the product of the number of incoming beam particles per unit time , the target particle density in the scattering material , and the target's thickness. Its unit [(area x time)-1].

$$
\text { Normalized Yield }=\frac{N_{e} \cdot p s}{Q . \rho_{a} \cdot \text { Boiling. } \epsilon_{t o t} \cdot L T}
$$

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\exp }=\frac{N_{e} \cdot p s}{N_{i n} \cdot \rho \cdot \Delta Z . L T . \epsilon_{t o t}} \frac{1}{\Delta \Omega}
$$

- N_{e} is the number of good events.
- $p s$ is the prescale factor for the production trigger.
- Q is the charge with stable beam current.
- ρ_{a} is the effective area density of the target $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$.
- Boiling is the ratio of the effective gas target density at given beam current comparing to no beam.
- $\epsilon_{t o t}$ is the product of all efficiencies.
- $L T$ is the computer livetime.

Selection of Good Electrons

TCut dp =
"fabs(L.tr.tg_dp)<0.035";
TCut phi =
"fabs(L.tr.tg_ph)<0.025";

TCut theta $=$
"fabs(L.tr.tg_th)<0.035";

dp
th

PID Cut

Cherenkov Cut >1500
Energy/ Momentum Cut >. 0.7
Trigger 1= $\mathrm{S}_{1} \& \mathrm{~S}_{2}$
Trigger 2= $\mathrm{S}_{1} \& \mathrm{~S}_{2} \&$ Cherenkov
Trigger 3= $S_{1}| | S_{2} \&$ Cherenkov
Cherenkov
Calorimeter
farget

- Live time: Ave. 0.90

Data Correction factors

- Trigger1 Efficiency: Ave. 0.99
- VDC Efficiency: Ave. 0.97
- Cherenkov Efficiency Ave. 0.99
- Pion Rejecters Efficiency Ave. 0.99

Background Contamination

S. N. Santiesteban et al., Nucl. Instr. Meth. 940 (2019).

- The machining the cell from a single piece of aluminum and the end piece is very hard to reproduce.
- The scattering from the electrons in the upstream endcap is also shatter from the gas particles in the gas targets, which does not happen in the empty cells.

Tritium Target

Background Contamination

Tritium Target

Elastic Cross Section Monte Carlo

What is SIMC

SIMC is a physics simulation Monte Carlo program primarily used by JLab's Halls A and C to simulate electron scattering experiments.

Features

\checkmark SIMC contains the geometry of the Hall A spectrometers including their various apertures and the materials that comprise them.
\checkmark SIMC uses an event generator to create electrons which scatter from a given target and records their final states as they were viewed by a detector.
\checkmark SIMC Includes radiative effects, multiple scattering, ionization energy loss and particle decay.
\checkmark Our version of SIMC works Nuclear elastic for $1 \mathrm{H}, 3 \mathrm{H}, 3 \mathrm{He}$ and any other target requires an elastic cross section model.

Agreement between the data and SIMC for Hydrogen target

- Shape agreement is good
- The resolution in XbJ slightly different
- The data Yield is 95% of the SIMC Yield for $0.95<\mathrm{xbj}<1.1$
- Present uncertainty $\sim 5 \%$ and we expected uncertainty ($\sim 3 \%$)

Agreement between the data and SIMC for ${ }^{3} \mathrm{He}$ target

- Shape agreement is good
- The resolution in XbJ slightly different.
- The data Yield is 93% of the SIMC for $2.6<$ xbj <3.3
- Present uncertainty $\sim 5 \%$ and we expected uncertainty ($\sim 3 \%$)

H \& ${ }^{3}$ He Preliminary Cross sections

Correction Factor

H cross section: $5.175 \pm 0.0134 \mu \mathrm{~b} / \mathrm{sr}$

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\exp }=\frac{\text { Yield }_{\text {exp }}}{\text { Yield }_{S I M C}}\left(\frac{d \sigma}{d \Omega}\right)_{\text {SIMC }}
$$

Expected Results

At low $Q^{2} \approx 0.11 \mathrm{GeV}^{2}$

Uncertainty ~1.5\% in the RATIO

One data point at

- Beam energy: 1.171 GeV
- Momentum: 1.128 GeV
- Angle: 17 degree

Charge Form Factor for 3H

This new data point will improve global fits and can be compared to the $3 \mathrm{H} / 3 \mathrm{He}$ ratio for the experiments that have tried extracting the charge radii of 3 H and give inconsistent results.

Thank you

Dr. Elena Long (Advisor)
P. Solvignon, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople) Tritium group's members.

Backup Slides

Rosenbluth Separation Technique

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\exp }=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left[F_{c h}^{2}+\frac{\tau}{\epsilon} F_{M}^{2}\right](1+\tau)^{-1}
$$

It is valid at low Q^{2} when the cross section is dominated by $F_{c h}$ and is mostly insensitive to F_{M}.

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right)_{r} & =\frac{\left(\frac{d \sigma}{d \Omega}\right)_{\exp }}{\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}} \epsilon(1+\tau)=\left[\epsilon F_{c h}^{2}+\tau F_{M}^{2}\right] \\
\epsilon^{-1} & =\left\{1+2(1+\tau) \tan ^{2}(\theta / 2)\right\}
\end{aligned}
$$

- we need at least 2 cross section measurements at the same Q^{2} (but different
 angles) to try and separate $F_{c h}$ and F_{M}.

Example of a Rosenbluth separation technique using data for elastic e ${ }^{-3} \mathrm{He}$ at $Q^{2}=55.1 \mathrm{fm}^{-2}$

One of the insights of subatomic physics is that at the microscopic level forces are caused by the exchange of force-carrying particles. For example the Coulomb force between two electrons is mediated by excitations of the electromagnetic field - i.e. photons

Let the incoming electron have momentum p and the outgoing scattered electron have momentum p. For elastic scattering, the energy of the electron is unchanged $E^{\prime}=E$ The electron has picked up a change of momentum $\Delta p=p^{\prime}-$ p from absorbing the virtual photon, but absorbed no energy. So the photon must have energy and momentum

Charge Form Factor and Charge Radius

$$
F\left(q^{2}\right)=\int e^{\frac{i q \cdot x}{\hbar}} \rho(x) d^{3} x \xrightarrow{x \rightarrow r} 4 \pi \int \rho(r) \frac{\sin (|q| r / \hbar)}{|q| r / \hbar} r^{2} d r
$$

- The charge distribution is spherically symmetric.

This procedure can be inverted to find the charge distribution of a target from its form factor.

$$
\rho(r)=\frac{1}{(2 \pi)^{3}} \int F\left(q^{2}\right) e^{\frac{-i q \cdot x}{\hbar}} d^{3} q
$$

For a hard sphere of charge the charge radius, R, is roughly given by

$$
R \approx \frac{4.5 \hbar}{q}
$$

Charge Form Factor and Charge Radius

$$
e^{i \frac{q r}{\hbar}}=\cos \left(\frac{q r}{\hbar}\right)+i \sin \left(\frac{q r}{\hbar}\right)
$$

At very low $q^{2} \quad R \ll \frac{\hbar}{q} \Longrightarrow \frac{R q}{\hbar} \ll 1 \quad i \sin \left(\frac{R q}{\hbar}\right) \rightarrow 0$

$$
\begin{gathered}
\boldsymbol{e}^{i \frac{q r}{\hbar}}=\boldsymbol{\operatorname { c o s }}\left(\frac{\boldsymbol{q r}}{\hbar}\right) \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \quad q \cdot r=|q \| r| \cos (\omega) \\
F\left(q^{2}\right)=\int_{0}^{\infty} \int_{-1}^{1} \int_{0}^{2 \pi} \rho(r)\left(1-\frac{1}{2} \frac{|q \| r| \cos (\omega)}{\hbar}\right) r^{2} d \phi d \cos (\omega) d r
\end{gathered}
$$

3He and 3H Target cells

3He and 3H Target cells

The target was 3 H dissolved in a thin titanium and copper metal foil, made at the Isotope Division of Oak Ridge National Laboratory. The copper was evaporated to a thickness of 1.97 $\mathrm{mg} / \mathrm{cm}$ on a $2.18 \mathrm{mg} / \mathrm{cm}$ titanium foil in order to improve the thermal conductivity.
The oil was then warmed to about $450^{\prime} \mathrm{C}$ and exposed to H 2 gas.
The result is a material which is partly a solution of gaseous hydrogen in the solid metal and partly the compound TiH2.
Unfortunately, the foil was wrinkled and consequently its absolute 3 H areal density was not known.

