Excited J- - resonances from meson-meson scattering at the SU(3) flavor point in lattice QCD.
The lightest vector \((J^{PC} = 1^{--})\) mesons are the \(\rho(770)\), \(\omega(782)\), \(\phi(1020)\).

States are well understood in \(e^+e^-\) annihilation due to their narrow widths and little background into decay into simple states like \(\pi\pi, \pi\pi\pi, \bar{K}K\).

\(\omega\) and \(\phi\) states separated via decay channels \(\pi\pi\pi\) vs \(\bar{K}K\) (OZI).

Excited vector states picture:

\(I=1\): There appears to be two states \(\rho(1450), \rho(1700)\)

\(I=0\): Three states \(\omega(1420), \omega(1650), \phi(1680)\)
Presence of two states in 1^{--} from quark model it is natural to interpret these states as a radial excitation in S-wave $[2^3S_1]$, and an orbital excitation in D-wave $[^3D_1]$ (or some linear combination of the two).

One would then expect three nearly degenerate D-wave states $[^3D_{1,2,3}]$.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell = 0$</td>
<td>1^-</td>
</tr>
<tr>
<td>$\ell = 1$</td>
<td>$(0, 1, 2)^+$</td>
</tr>
<tr>
<td>$\ell = 2$</td>
<td>$(1, 2, 3)^-$</td>
</tr>
</tbody>
</table>

What has been claimed in the PDG:

Isovector: $\rho(1450), \rho(1700), \rho_3(1690)$

Isoscalar: $\omega(1420), \omega(1650), \omega_3(1670)$ / $\phi(1680), \phi_3(1850)$.
A Place to start

Energy spectrum calculated by *hadspec* of the excited states as if they were stable.

These states actually feature as resonances.

\[m_\pi \sim 391 \text{ MeV} \]

These J^{--} states are resonances which can be accessed in scattering amplitudes.

Scattering amplitude ↔ resonance mass/width
\[t \sim \frac{g^2}{s - s_0} \quad \sqrt{s_0} = m_R + \frac{i}{2} \Gamma_R \]

Finite-volume spectrum ↔ scattering amplitude.
Lattice QCD

Introduces three fundamental changes:

- Lattice spacing → does not likely play a big role
- Lattice volume → tool we need for scattering
- Quark mass → feature we make use of increasing pion mass

Compute correlation functions $C_{ij}(t) = \langle 0 | O_i(t)O_j(0) | 0 \rangle$ to extract the discrete finite volume spectrum

$$C_{ij}(t) = \sum_\alpha \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_\alpha t}$$
Luscher’s quantization condition: \[\det \left[1 + i \rho \cdot t \cdot (1 + iM) \right] = 0 \]

\[\rho_i(E) = \frac{2k_i}{E} \]

\[\text{Im} \left(t_{ij}^{-1} \right) = -\delta_{ij} \rho_i \]

\[M_{ij}(E, L) \text{ is a known matrix} \]

Unitarity

Elastic scattering for spin-zero particles \[\Rightarrow t^\ell(E) = \frac{1}{\rho(\cot \delta^\ell(E) - i)} \]

Solutions follow from K-matrix parameterizations of the amplitude:

\[\text{det} \left[1 + i \rho \cdot t \cdot \left(1 + iM \right) \right] = 0 \]

\[t^{-1} = K^{-1} - i\rho \]

\[K_{ij}(s) = \sum a \frac{g_i^{(a)}}{m_a^2 - s} + \sum \beta \gamma_{ij} \]

This project studies the isoscalar J^{--} excited mesons at the SU(3) flavor point

⇒ Heavier light quark masses allow us to probe higher energy regions: first three-particle threshold gets moved higher up
 resonant states at lighter quark masses feature as stable particles
⇒ Fewer channels (ex. π, K, \bar{K}, η are all just η^8)
Channels

J=1: $\eta^8 \omega^8 \{^3P_1\}, f_0^1 \omega^1 \{^3S_1, ^3D_1\}, \eta^1 \omega^1 \{^3P_1\}$

J=2: $\eta^8 \omega^8 \{^3P_2, ^3F_2\}, f_0^1 \omega^1 \{^3D_2\}, \eta^1 \omega^1 \{^3P_2, ^3F_2\}$

J=3: $\eta^8 \omega^8 \{^3F_3\}, f_0^1 \omega^1 \{^3D_3, ^3G_3\}, \eta^1 \omega^1 \{^3F_3\}$
How do we solve this?

Broken rotational symmetry of the lattice causes different resonances to be in the same representation.

Only two systems that isolate a single resonance

All other irreps will feature a minimum of TWO resonances

$^3D_{1,2,3}$ states are expected to be nearly degenerate.

$J^P = (2,\ldots)^-$

$J^P = (3,\ldots)^-$
Three resonances in a single irrep.

\[J^P = (1,3,...)^- \]

\[\Rightarrow \rho\{^3S_1\}, \rho\{^3D_1\}, \rho\{^3D_3\} \]

Very dense in energy levels.
$J^P = (1, 3, \ldots)^-$ $J^P = (2, \ldots)^-$ $J^P = (2, 3, \ldots)^-$ $J^P = (3, \ldots)^-$
| J^P | \[100\] A_1 | \[100\] B_1 | \[100\] B_2 | \[110\] A_1 | \[111\] A_1
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^+, 1^-, 2^+, 3^-$</td>
<td>$2^\pm, 3^\pm, ...$</td>
<td>$2^\pm, 3^\pm, ...$</td>
<td>$0^+, 1^-, 2^+, 3^\pm, ...$</td>
<td>$0^+, 1^-, 2^+, 3^\pm, ...$</td>
<td>$0^+, 1^-, 2^+, 3^\pm, ...$</td>
</tr>
</tbody>
</table>

\[a_i E_{cm} \]

\[L/\alpha \]
Parameterizations, J=2,3

J=2 dynamically coupled in P- and F-waves
Can handle this with the K-matrix \(t^{-1} = K^{-1} + I \)
\[
K_{J=2} = \begin{bmatrix}
(3P_2|3P_2) & (3P_2|3F_2) \\
(3P_2|3F_2) & (3F_2|3F_2)
\end{bmatrix}
\]

J=3 Briet-Wigner parameterization
\[
K_{J=3} = \frac{g_F^2}{m_R^2 - s}
\]

\[
I(s) = I(s_0) - \frac{s - s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{\rho(s')}{(s' - s_0)(s' - s - i\epsilon)} ds'
\]
\[
\text{Im} I = -\rho
\]
$\eta^8 \omega^8$ elastic scattering in $2^{--}, 3^{--}$
$\eta^8 \omega^8$ elastic scattering in 2^{--}
$\eta^8 \omega^8$ elastic scattering in 1^{--}

$$K_{J=1} = \frac{g_a^2}{m_a^2 - s} + \frac{g_b^2}{m_b^2 - s} + \gamma$$

$m_a = 0.3881(14) \cdot a_t^{-1}$
$g_a = 1.46(10)$
$m_b = 0.4242(17) \cdot a_t^{-1}$
$g_b = -0.36(13)$
$\gamma = 20.9(86) \cdot a_t^2$

$$\chi^2/N_{dof} = \frac{91.3}{72-5} = 1.36$$
η^8 ω^8 elastic scattering in 1−−

\[K_{J=1} = \frac{g_a^2}{m_a^2 - s} + \frac{g_b^2}{m_b^2 - s} + \gamma s^n \]

\[K_{J=1} = \frac{g_a^2}{m_a^2 - s} + \frac{g_b^2}{m_b^2 - s} \]
Zero is a feature of elastic unitarity

\[t = \frac{1}{\rho (\cot \delta - i)} \]
In N.R. scattering, the scattering amplitude is completely determined by the potential.

\[V_{\text{eff}}(r) = V(r) + \frac{\ell(\ell + 1)}{r^2} \]

Resonance interpretation

\[t(s) = \frac{N(s)}{D(s)} \quad \text{“Unphysical cut” } s < s_{thr} \]
\[t(s) = \frac{N(s)}{D(s)} \quad \text{“Physical cut” } s > s_{thr} \]

\[D(s) = D(s_0) - \frac{s - s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{N(s')\rho(s')}{(s' - s)(s' - s_0)} \, ds' + \sum_\alpha \frac{g_\alpha^2}{m_\alpha^2 - s} \]

Can add poles to \(D(s) \) that produce zeros in \(t(s) \)
A crude extrapolation

\[
\omega = \sqrt{\frac{2}{3}} \omega_1 + \sqrt{\frac{1}{3}} \omega_8 ; \phi = \sqrt{\frac{1}{3}} \omega_1 - \sqrt{\frac{2}{3}} \omega_8
\]

Assume an exact OZI symmetry to get the couplings to the octet

Assume width scales with the angular momentum \(\sim k^\ell \)

Octet calculation is underway

<table>
<thead>
<tr>
<th>Calculation</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_{\pi^0} \sim 62 \text{ MeV})</td>
<td>(\Gamma_{\omega(1670)}^{\pi\omega} \sim 168(10) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\omega_3}^{K\bar{K}^*} \sim 2 \text{ MeV})</td>
<td>(\Gamma_{\omega(1670)}^{\pi\omega} \sim 168(10) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\omega_3}^{\eta\omega} \sim 1 \text{ MeV})</td>
<td>(\Gamma_{\omega(1670)}^{\pi\omega} \sim 168(10) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\phi_3}^{K\bar{K}^*} \sim 20 \text{ MeV})</td>
<td>(\Gamma_{\phi(1850)}^{\pi\phi} \sim 87(25) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\phi_3}^{\eta\phi} \sim 3 \text{ MeV})</td>
<td>(\Gamma_{\phi(1850)}^{\pi\phi} \sim 87(25) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\rho_3}^{\pi\omega} \sim 22 \text{ MeV})</td>
<td>(\Gamma_{\rho(1690)}^{\pi\omega} \sim 30(10) \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\rho_3}^{K\bar{K}^*} \sim 2 \text{ MeV})</td>
<td>(\Gamma_{\rho(1690)}^{K\bar{K}} \sim 7 \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\rho_3}^{\pi\omega} \sim 9 \text{ MeV})</td>
<td>(\Gamma_{\rho(1700)}^{\pi\omega} \sim 0 \text{ MeV})</td>
</tr>
<tr>
<td>(\Gamma_{\rho_3}^{K\bar{K}^*} \sim 3 \text{ MeV})</td>
<td>(\Gamma_{\rho(1700)}^{K\bar{K}} \sim 250(100) \text{ MeV})</td>
</tr>
</tbody>
</table>

Add the [011]A_1 irreps and fit all simultaneously

Very good constraint \(N_{\text{dof}} = 180 \)

\[
\begin{align*}
K_{J=1} &= \frac{g_a^2}{m_a^2 - s} + \frac{g_b^2}{m_b^2 - s} + \gamma \\
K_{J=2} &= \frac{1}{m_R^2 - s} \left[\begin{array}{cc} g_P^2 & g_P g_F \\ g_P g_F & g_F^2 \end{array} \right] + \left[\begin{array}{cc} \gamma_{PP} & \gamma_{PF} \\ \gamma_{PF} & 0 \end{array} \right] \\
K_{J=3} &= \frac{g_F^2}{m_F^2 - s}
\end{align*}
\]

\[
\chi^2 / N_{\text{dof}} = 258.3 / (192 - 12) = 1.43
\]
Thanks
[000] T_1^-

[000] E^-

[000] T_2^-

[000] A_2^-
We extract 4 resonances consistent with the quark model prediction.

1$^{-}$: broader lighter first resonance and heavier narrower second resonance

2$^{-}$: broad resonance coupled mostly to P-wave

3$^{-}$: narrow F-wave resonance
Add the $[011]A_1$ irreps and fit all simultaneously.

Very good constraint $N_{\text{dof}} = 180$
Calculation of the octet is underway:

⇒ more channels

⇒ identical particles η^8, ω^8

⇒ nearly degenerate thresholds in $\eta^8\omega^8, \eta^8\omega^1$

Would like to be able to study the hybrid candidate that lies slightly above in 1^{--}

⇒ likely requires three-particle formalism
Fig. 2

Fig. 5. $e^+e^-\rightarrow\pi^+\pi^-$ cross section versus \sqrt{s}. The Novosibirsk points are from ref. [2]. D. Bisello et al. (DM2), Phys. Lett. B 220, 321 (1989).

Lattice QCD

Optimized operator constructed from applying the eigenvectors extracted from applying the variational method $h^\dagger = \sum_i v_i O_i$

Finite volume spectrum $\Rightarrow C_{ij}(t) = \sum_\alpha \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_\alpha t}$

Single meson operators: $\sum_{\vec{x}} e^{i\vec{p} \cdot \vec{x}} \bar{\psi} D \bar{D} \ldots \bar{D} \psi$

Meson-meson operators: $\sum_{\vec{p}_1+\vec{p}_2=\vec{P}} C(\vec{p}_1, \vec{p}_2; \vec{P}) h_1^\dagger(\vec{p}_1) h_2^\dagger(\vec{p}_2)$

Momentum is quantized $\vec{p} = \frac{2\pi}{L} \vec{n}$

No interactions

$E = \sqrt{m_1^2 + \left(\frac{2\pi \vec{n}_1}{L}\right)^2} + \sqrt{m_2^2 + \left(\frac{2\pi \vec{n}_2}{L}\right)^2}$
Variational Method

Diagonalize matrix of correlation functions to produce the finite volume spectrum:

\[C(t) v^\alpha(t) = \lambda^\alpha(t) C(t_0) v^\alpha(t) \]

\[\sim e^{-E^\alpha(t-t_0)} \]

\[\langle 0 | O_i | \alpha \rangle = (V_i^{\alpha})^{-1} \sqrt{2E^\alpha} e^{E^\alpha t_0/2} \]

Use the orthonormality of the eigenvectors to distinguish states, and extract energies from the principle correlators \(\lambda^\alpha(t) \).
Coupled channel with nonzero spin

Orbital and angular momentum couple $\mathcal{L} \otimes S \rightarrow J$

Can use K-matrix to handle this (ex. $0^{-+}, 1^{--}$ scattering in $J^P = 1^+$)

$$K_{1+} = \begin{pmatrix} \langle 3S_1 | 3S_1 \rangle & \langle 3S_1 | 3D_1 \rangle \\ \langle 3S_1 | 3D_1 \rangle & \langle 3D_1 | 3D_1 \rangle \end{pmatrix}$$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1+</td>
</tr>
<tr>
<td>1</td>
<td>$(0,1,2)^-$</td>
</tr>
<tr>
<td>2</td>
<td>$(1,2,3)^+$</td>
</tr>
<tr>
<td>3</td>
<td>$(2,3,4)^-$</td>
</tr>
</tbody>
</table>

Done in both non-resonant and resonant systems:

"Dynamically-coupled partial-waves in $\rho \pi$ isospin-2 scattering from lattice QCD" - A. Woss, C. Thomas, J. Dudek

"The b_1 resonance in coupled $\pi \omega, \pi \phi$ scattering from lattice QCD" - A. Woss, C. Thomas, J. Dudek
SU(3) Flavor

Two neutral members basis states \(I = I_z = Y = 0 \)

\[
|1\rangle = \frac{1}{\sqrt{3}} (|\bar{u}u\rangle + |\bar{d}d\rangle + |\bar{s}s\rangle)
\]

\[
|8\rangle = \frac{1}{\sqrt{6}} (|\bar{u}u\rangle + |\bar{d}d\rangle - 2|\bar{s}s\rangle)
\]

Pseudoscalar have small mixing angle from SU(3) states \(\sim -10^\circ \)

\[
|\eta\rangle \sim |\eta^8\rangle \quad |\eta'\rangle \sim |\eta^1\rangle
\]

Mixing splits into light and strange quarks (OZI)

\[
|\omega\rangle \sim \frac{1}{\sqrt{2}} (|\bar{u}u\rangle + |\bar{d}d\rangle) \quad |\phi\rangle \sim |\bar{s}s\rangle
\]
SU(3) Flavor

\begin{align*}
\eta^8 & \quad f_0^1 \\
f_2^8 & \quad f_2^1 \\
f_1^8 & \quad h_1^1 \\
\eta^8 \eta^8 & \quad f_0^8 \\
\omega^8 & \quad \omega^1 \\
\eta^1 & \quad f_0^1 \\
\eta^8 & \quad 0^{-(+)} \\
1^{-(-)} & \quad 0^{+(+)} \\
2^{+(+)} & \quad 1^{+(+)} \\
1^{+(-)} & \\
\eta^1 & \quad 0.1478(1) \\
\omega^8 & \quad 0.2154(2) \\
f_0^1 & \quad 0.2007(18) \\
\eta^1 & \quad 0.2017(11) \\
\omega^1 & \quad 0.2174(3)
\end{align*}
Finite volume spectrum \(\Rightarrow C_{ij}(t) = \sum_{\alpha} \langle 0 | O_i | \alpha \rangle \langle \alpha | O_j | 0 \rangle e^{-E_{\alpha}t} \)

Single meson operators: \[\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi} \hat{D} \hat{D} \ldots \hat{D} \psi \]

Meson-meson operators: \[\sum_{\vec{p}_1+\vec{p}_2=\vec{P}} C(\vec{p}_1, \vec{p}_2; \vec{P}) h_1^i(\vec{p}_1) h_2^i(\vec{p}_2) \]

Will include \(\eta^8(\vec{p}_1) \omega^8(\vec{p}_2), \eta^1(\vec{p}_1) \omega^1(\vec{p}_2), f_0^1(\vec{p}_1) \omega^8(\vec{p}_2) \)

\[\eta^1 \omega^1 / f_0^1 \omega^1 \]
Plan of attack

Carry forward with elastic scattering in $\eta^8 \omega^8$

⇒ fit to amplitudes of J=2,3 simultaneously ($T^-_2[000], E^-[000], A^-_2[000], B_1[001], B_2[001]$)

⇒ fix J=3 amplitude and fit for the J=1 amplitude ($T^-_1[000], A_1[001], A_1[111]$)

Perform analysis of $\eta^1 \omega^1, f_0^1 \omega^1$ as if channels were non-resonant and totally decoupled

Later relax the elastic assumption and allow $\eta^1 \omega^1$ to couple

⇒ we find the change is rather insignificant
Channels in SU(3) Flavor

Conventional $\bar{q}q$ mesons live in either a singlet ($\bar{3} \otimes 3 \rightarrow 1$) or octet ($\bar{3} \otimes 3 \rightarrow 8$) representations.

Two ways to project to flavor singlet $8 \otimes 8 \rightarrow 1$, and trivially $1 \otimes 1 \rightarrow 1$.

Charge conjugation in neutral member of the octet $|I = I_z = Y = 0\rangle$ for $8 \otimes 8 \rightarrow 1$:

\[\hat{C}(|8_1, C_1\rangle \otimes |8_2, C_2\rangle) \rightarrow C_1C_2(|8_1, C_1\rangle \otimes |8_2, C_2\rangle) \]

⇒ channels with $C=-$:

$\eta^8(0^{-+})\omega^8(1^{--}), f_0^{1}(0^{++})\omega^1(1^{--}), \eta^1(0^{-+})\omega^1(1^{--})$

⇒ can’t have identical particles with $C=-$
Three resonances in a single irrep.

\[J^P = (1,3,...)^- \]

Very dense in energy levels.

\[\Rightarrow \rho\{3^2S_1\}, \rho\{3^3D_1\}, \rho\{3^3D_3\} \]

Appears to be a decoupling within the heavier channels \(f_0^1\eta^1, \eta^1\omega^1 \)
\[1.42 < \frac{\chi^2}{N_{\text{dof}}} < 1.46 \]

\[1.66 < \frac{\chi^2}{N_{\text{dof}}} < 1.86 \]
\[K_{J=1} = \frac{g_a^2}{m_a^2 - s} + \frac{g_b^2}{m_b^2 - s} + \gamma s^n \]
Resonance interpretation

\[t(s) = \frac{N(s)}{D(s)} \]

Write dispersively

\[\frac{1}{2\pi i} \oint \frac{D(s')}{s' - s} = D(s_0) - \frac{s - s_0}{\pi} \int_{s_{thr}}^{\infty} \frac{N(s')\rho(s')}{(s' - s)(s' - s_0)} ds' \]

\(\Rightarrow \) can add poles to \(D(s) \) that feature as zeros in \(t(s) \)

\(\Rightarrow \) create nearby poles in \(t(s) \)

\(\Rightarrow \) these “CDD” poles have an interpretation that they would be stable particles if there were not lighter mesons for which it to decay
Comparing to the ω_J^*, ϕ_J^*

Vector states are mixtures of the singlet and octet states

$$\omega = \sqrt{\frac{2}{3}} \omega_1 + \sqrt{\frac{1}{3}} \omega_8; \ \phi = \sqrt{\frac{1}{3}} \omega_1 - \sqrt{\frac{2}{3}} \omega_8$$

Pseudoscalar states have little mixing from SU(3) eigenstates $\eta \sim \eta_8, \eta' \sim \eta_1$

If we assume excited J^{--} have the same quark content as the vector states, we need to know the result of the octet couplings to find the partial width of the isoscalar resonances to pseudoscalar-vector final states.

We can still guess what the result of the octet calculation would be by assuming an exact OZI symmetry.
Comparing to the ω^*_J, ϕ^*_J

We first re-write the couplings in the basis of familiar meson states:

$$|\eta^8 \otimes \omega^8 \rightarrow 1\rangle = \frac{1}{2\sqrt{2}} (K^+\bar{K}^- + K^-\bar{K}^* - K^0\bar{K}^{*0} - \bar{K}^0K^{*0} + \pi^+\rho^- + \pi^-\rho^+ - \pi^0\rho^0 - \eta_8\omega_8) : g^1$$

$$|\eta^8 \otimes \omega^8 \rightarrow 8\rangle = \sqrt{\frac{1}{20}} (K^+K^{*-} + K^-\bar{K}^* - K^0\bar{K}^{*0} - \bar{K}^0K^{*0}) - \sqrt{\frac{1}{5}} (\pi^+\rho^- + \pi^-\rho^+ - \pi^0\rho^0 - \eta_8\omega_8) : g^8$$

$$|\eta^8 \otimes \omega^1 \rightarrow 8\rangle = \eta_8\omega_1 = \sqrt{\frac{2}{3}}\eta\omega + \sqrt{\frac{1}{5}}\eta\phi : h^8$$

OZI disallowed decays:

$$\phi^* \rightarrow \rho\pi \sim \sqrt{\frac{1}{3}}\frac{1}{2\sqrt{2}} g^1 + \left(-\sqrt{\frac{2}{3}}\right) \left(-\sqrt{\frac{1}{5}}\right) g^8$$

$$\phi^* \rightarrow \eta\omega \sim \sqrt{\frac{1}{3}} \left(-\frac{1}{2\sqrt{2}}\right) \sqrt{\frac{1}{3}} g^1 + \left(-\sqrt{\frac{2}{3}}\right) \left(-\sqrt{\frac{1}{5}}\right) \sqrt{\frac{1}{3}} g^8 + \left(-\sqrt{\frac{2}{3}}\right) \sqrt{\frac{2}{3}} h^8$$

Leads to the constraints:

$$g^8 = -\frac{\sqrt{5}}{4} g^1; h^8 = -\frac{1}{2\sqrt{2}} g^1$$
Comparing to the ω_J^*, ϕ_J^*

We write the partial widths as $\Gamma = g^2 \frac{\rho}{M}$.

OZI relations together with a sum over the charged states give us the following partial widths:

$$\Gamma(\omega^* \rightarrow \pi \rho) = 3 \frac{\rho}{M} \frac{3}{16} (g^1)^2$$
$$\Gamma(\omega^* \rightarrow K \bar{K}^*) = 4 \frac{\rho}{M} \frac{3}{64} (g^1)^2$$
$$\Gamma(\omega^* \rightarrow \eta \omega) = 1 \frac{\rho}{M} \frac{1}{16} (g^1)^2$$
$$\Gamma(\phi^* \rightarrow K \bar{K}^*) = 4 \frac{\rho}{M} \frac{3}{32} (g^1)^2$$
$$\Gamma(\phi^* \rightarrow \eta \phi) = 1 \frac{\rho}{M} \frac{1}{4} (g^1)^2$$
$$\Gamma(\rho^* \rightarrow \pi \omega) = 1 \frac{\rho}{M} \frac{3}{16} (g^1)^2$$
$$\Gamma(\rho^* \rightarrow K \bar{K}^*) = 2 \frac{\rho}{M} \frac{3}{32} (g^1)^2$$

We attempt to rescale the angular momentum barrier factors:

$$g^1 = \left| \frac{k^{\text{phys}}(M^{\text{phys}})}{k(M)} \right|^\ell |c_{\eta \omega}|^8$$

We attempt to rescale the angular momentum barrier factors:
Comparing to the ω^*_J, ϕ^*_J

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(\omega_3 \rightarrow \pi \rho) = 62$ MeV</td>
<td>$\Gamma^{tot}_{\omega_3(1670)} \sim 168(10)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\omega_3 \rightarrow K \bar{K}^*) = 2$ MeV</td>
<td>$\Gamma^{tot}_{\omega_3(1670)} \sim 168(10)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\omega_3 \rightarrow \eta \omega) = 1$ MeV</td>
<td>$\Gamma^{tot}_{\omega_3(1670)} \sim 168(10)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\phi_3 \rightarrow K \bar{K}^*) = 20$ MeV</td>
<td>$\Gamma^{tot}_{\phi_3(1850)} \sim 87(25)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\phi_3 \rightarrow \eta \phi) = 3$ MeV</td>
<td>$\Gamma^{tot}_{\phi_3(1850)} \sim 87(25)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\rho_3 \rightarrow \pi \omega) = 22$ MeV</td>
<td>$\Gamma^{\pi \omega}_{\rho_3} \sim 30(10)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\rho_3 \rightarrow K \bar{K}^*) = 2$ MeV</td>
<td>$\Gamma^{K \bar{K} \pi}_{\rho_3} \sim 7$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\rho_2 \rightarrow \pi \omega, K \bar{K}^*) = 125, 36$ MeV</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(\omega_2 \rightarrow \pi \rho, K \bar{K}^*, \eta \omega) = 365, 36, 17$ MeV</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(\phi_2 \rightarrow K \bar{K}^*, \eta \phi) = 148, 44$ MeV,</td>
<td></td>
</tr>
</tbody>
</table>
Comparing to the ω_j^*, ϕ_j^*

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Experiment</th>
<th>Prediction</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(\omega_b \rightarrow \pi\rho) = 25$ MeV</td>
<td>$\Gamma_{\omega(1650)}^{tot} \sim 315(35)$ MeV</td>
<td>$\Gamma(\omega_a \rightarrow \pi\rho) = 384$ MeV</td>
<td>$\Gamma_{\omega(1420)}^{\pi\rho} \sim 240$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\omega_b \rightarrow K\bar{K}^*) = 3$ MeV</td>
<td>$\Gamma_{\omega(1650)}^{\pi\rho} \sim 84$ MeV</td>
<td>$\Gamma(\omega_a \rightarrow K\bar{K}^*) = 4$ MeV</td>
<td>$\Gamma_{\omega(1420)}^{tot} \sim 290(120)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\omega_b \rightarrow \eta\omega) = 1$ MeV</td>
<td></td>
<td>$\Gamma(\omega_a \rightarrow \eta\omega) = 5$ MeV</td>
<td>$\Gamma_{\phi(1680)}^{tot} \sim 150(50)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\phi_b \rightarrow K\bar{K}^*) = 13$ MeV</td>
<td></td>
<td>$\Gamma(\phi_a \rightarrow K\bar{K}^*) = 154$ MeV</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(\phi_b \rightarrow \eta\phi) = 5$ MeV</td>
<td></td>
<td>$\Gamma(\phi_a \rightarrow \eta\omega) = 25$ MeV</td>
<td></td>
</tr>
<tr>
<td>$\Gamma(\rho_b \rightarrow \pi\omega) = 9$ MeV</td>
<td>$\Gamma_{\rho(1700)}^{\pi\omega} \sim 0$ MeV</td>
<td>$\Gamma(\rho_a \rightarrow \pi\omega) = 133$ MeV</td>
<td>$\Gamma_{\rho(1450)}^{tot} \sim 400(60)$ MeV</td>
</tr>
<tr>
<td>$\Gamma(\rho_b \rightarrow K\bar{K}^*) = 3$ MeV</td>
<td>$\Gamma_{\rho(1700)}^{tot} \sim 250(100)$ MeV</td>
<td>$\Gamma(\rho_a \rightarrow K\bar{K}^*) = 9$ MeV</td>
<td>$\Gamma_{\rho(1450)}^{\pi\omega} \sim 52 - 78$ MeV</td>
</tr>
</tbody>
</table>
Only 4 levels with large $\eta^1 \omega^1$ overlap.

Only real difference in fit-1 which features two $\eta^1 \omega^1$ parameters.

Potentially a small coupling $c_{\eta^1 \omega^1} \lesssim 0.04$ does not change overall width.

Statistical uncertainties on $f_0^1 \omega^1$ energy levels prevent a proper C.C. analysis with this channel.
Mild changes in the amplitude.

\[a_t | c_{\eta^1 \omega^1} | \sim 0.07(2) \] is small and comparable to F-wave coupling.
Additional singularities

Unphysical sheet real axis pole $a_t \sqrt{s} \sim 0.23$ on many parameterizations

⇒ wanders a bit and remains far from physical scattering

Additional real axis pole $a_t \sqrt{s} \sim 0.24$ for simple phase space parameterization

⇒ not surprising this parameterization has poorer analytic properties

⇒ residue is real, a true p-wave bound state has imaginary coupling
Amplitude analytic structure

The full scattering amplitude $T(s,t)$ relates all scattering channels s,t,u through an analytic continuation.

s-channel unitarity constrains the “right hand cut” to form $2^{N_{\text{chan}}}$ Riemann sheets

\Rightarrow built into our parameterizations

Analyticity requires poles off axis real valued poles be on unphysical sheets.

\Rightarrow reject parameterizations that have these

t,u-channel unitarity manifests themselves in the form of a “left hand cut”

\Rightarrow not described but we know where they are

\Rightarrow hope is we remain far enough away
Cross Channels

S-Channel

\[\eta^8(p_1) \quad \omega^8(p_2) \quad \omega^8(p_4) \]

T-Channel

\[\eta^8(p_1) \quad \eta^8(p_3) \quad \omega^8(p_2) \quad \omega^8(p_4) \]

U-Channel

\[\eta^8(p_1) \quad \eta^8(p_3) \quad \omega^8(p_2) \quad \omega^8(p_4) \]
Cuts

T-channel circular cut
\[R = m_{\omega s}^2 - m_{\eta s}^2 \]

S-channel

U-channel
Stable particles in cross-channels add additional singularities

Stable ω^1 in U-channel

Stable f_0^1 in T-channel

Right-most part of additional cuts at $a_t\sqrt{s} = 0.299$ compared to threshold of $a_t\sqrt{s} = 0.3632$
Additional Singularities

Physical sheet pole at $a_t \sqrt{s} = 0.278(26)$ wrong residue.

⇒ asses this as a “ghost” occurring from improper treatment of the LHC

Noisy third unphysical sheet pole lies beyond region of constraint $a_t E \sim 0.46$.

⇒ artifact not present in all parameterizations

⇒ could be feeling presence of a hybrid 1^{--} meson we expect in that region