GHP 21

Apr, 2021

MULTIQUARK Phenomenology

Eric Swanson

X(2866,0+) X(2901,1+)

"Kinematic Singularity and Resonance Interpretations of the X(2900)" T.J. Burns and E.S. Swanson; arXiv:2008.12838

"Discriminating Among Interpretations for the X(2900) States" T.J. Burns and E.S. Swanson; arXiv:2009.05352

LHCb Discovery

$$\begin{array}{ll} X_0 & {}^{M\,=\,2.866\,\pm\,0.007\,\pm\,0.002~{\rm GeV},} \\ {}^{\Gamma\,=\,57\,\pm\,12\,\pm\,4~{\rm MeV},} \end{array} \end{array}$$

 $\begin{matrix} M = 2.904 \pm 0.005 \pm 0.001 \,\, {\rm GeV}, \\ \Gamma = 110 \pm 11 \pm 4 \,\, {\rm MeV}. \end{matrix}$

manifestly exotic channel $uds\bar{c}$

arXiv:2009.00026v2

$\lambda(1^-)$	$ \bar{D}^*K^* _P$	$\bar{D}_1 K _S$	$\bar{D}_1 K^* _S$	$\bar{D}K _P$
$\overline{D}^*K^* _P$	C_3	C_2	C_2	C_3
$\bar{D}_1 K _S$		0	C_1	0
$ar{D}_1 K^* _S$			C_1	0
$\bar{D}K _P$				0

case	C_1	C_2	C_3
weak	-3	3	2
moderate	-30	17	7
strong	-60	17	7

(strong case)

Pc(4457) Pc(4440) Pc(4312)

T.J. Burns and E.S. Swanson; writing now

LHCb Discovery

 $\Lambda_b^0 \to J/\psi p K^-$

1/2-	$D_s^*\Lambda_c D$	$D_s^* \Lambda_c D^*$	$\Sigma_c D$	$\Sigma_c D^*$	$\Sigma_c^* D^*$	$J/\psi N$
$D_s^*\Lambda_c D$	A	0	0	$\sqrt{3}B$	$\sqrt{6}B$	$\frac{\sqrt{3}}{2}D$
$D_s^*\Lambda_c D^*$		А	$\sqrt{3}B$	-2B	$\sqrt{2}B$	$-\frac{D}{2}$
$\Sigma_c D$			C_a	$\frac{2}{\sqrt{3}}C_b$	$-\sqrt{2/3}C_b$	$-\frac{1}{2\sqrt{3}}E$
$\Sigma_c D^*$				$C_a - \frac{4}{3}C_b$	$-\frac{\sqrt{2}}{3}C_b$	$\frac{5}{6}E$
$\Sigma_c^* D^*$					$C_a - \frac{5}{3}C_b$	$\frac{\sqrt{2}}{3}E$
$J/\psi N$						0

$3/2^{-}$	$D_s^* \Lambda_c D^*$	$\Sigma_c^* D$	$\Sigma_c D^*$	$\Sigma_c^* D^*$	$J/\psi N$
$D_s^* \Lambda_c D^*$	A	$-\sqrt{3}B$	В	$\sqrt{5}B$	D
$\Sigma_c^* D$		C_a	$\frac{C_b}{\sqrt{3}}$	$\sqrt{\frac{5}{3}}C_b$	$-\frac{E}{\sqrt{3}}$
$\Sigma_c D^*$			$C_a + \frac{2}{3}C_b$	$-\frac{\sqrt{5}}{3}C_b$	$\frac{E}{3}$
$\Sigma_c^* D^*$				$C_a - \frac{2}{3}C_b$	$\frac{\sqrt{5}}{3}E$
$J/\psi N$				<u> </u>	0

$1/2^{+}$	$D_s^*\Lambda_c'D$	$D_s^*\Lambda_c'D^*$	$\Sigma_c D(P)$	$\Sigma_c D^*(P)$	$J/\psi N(P)$
$D_s^*\Lambda_c'D$	f_a	$2f_b/\sqrt{3}$	_		G
$D_s^*\Lambda_c'D^*$		$f_a - \frac{4}{3}f_b$	_	—	Н
$\Sigma_c D$			_	—	
$\Sigma_c D^*$				_	
$J/\psi N$					0

	SD	S*D	SI)*		S*D*		L'D
	1/2-	3/2-	1/2-	3/2-	1/2-	3/2-	5/2-	1/2+
	Ca	Ca	Ca-4/3Cb	Ca+2/3Cb	Ca-5/3Cb	Ca-2/3Cb	Ca+Cb	
Case 1	4312	4380	4440	4457	(x)	x		
Case 2	4312	4380	4457	4440		x	x	
Case 3	4312	4380		4440			X	4457
Case 4	4312	4380	4440		(x)	x		4457

B=1.000000

case 4 (others do not do well)

JLab non-observation

JLab non-observation

X(4150;2-) X(4140;1+) Zcs(4000;1+) X(4630,1-) X(4274,1+) Zcs(4220,1+) X(4500,0+) X(4685,1+) X(4700,0+)

T.J. Burns and E.S. Swanson; in progress

LHCb Discovery

 $B^+ \to J/\psi \phi K^+$

Figure 3: Distributions of ϕK^+ (left), $J/\psi \phi$ (middle) and $J/\psi K^+$ (right) invariant masses for the $B^+ \rightarrow J/\psi \phi K^+$ candidates (black data points) compared with the fit results (red solid lines) of the default model (top row) and the Run 1 model (bottom row).

Zcs Thresholds

Zcs Thresholds

1+ psi-K S-waves:

DDs* 3981 D*Ds 3978 D*Ds 4122 D0Ds1 4759 D1Ds0 4738 D1Ds1 4880 D1Ds1 4880 D1Ds1 4956 D1Ds2 4990 D2Ds1 4920 D2Ds1 4920 D2Ds1 4996 D2Ds2 5030

X Thresholds

Conclusions & Observations

Conclusions and Observations

- "Triangles" do a good job of 'explaining' the X₁, although a weakly bound $\overline{D}^*K^* \overline{D}_1K$ resonance explanation is slightly preferred.
- "Triangles" explain 'kinks' at $\Lambda_c D$, $\Lambda'_c D^*$ and the 4457 peak $(\Lambda'_c D)$; weakly bound $\Sigma_c D$ resonances are required for the 4312 ($\Sigma_c D$), 4380 ($\Sigma_c^* D$), & 4440 ($\Sigma_c^* D^*$). Triangle-FSI cooperation evades JLab bounds.
- "Triangles" and weakly bound states appear to have little to do with the $J/\psi \phi$ and $J/\psi K$ states.

$J/\psi - \phi$ S-waves

0+: DsDs 3936 Ds*Ds* 4224 Ds0Ds0 4634 Ds1Ds1 4918 Ds1Ds1' 4994 Ds1'Ds1' 5070 Ds2Ds2 5138

1-: DsDs1 4427 DsDs1' 4503 Ds*Ds0 4429 Ds*Ds1 4571 Ds*Ds1' 4647 Ds*Ds2 4681

1+: DsDs* 4080 Ds*Ds* 4424 Ds1Ds1 4918 Ds1Ds1' 4994 Ds1'Ds1' 5070 Ds1Ds2 5028 Ds1'Ds2 5104 Ds2Ds2 5138

2-: DsDs2 4537 Ds1Ds* 4571 Ds1'Ds* 4647 Ds*Ds2 4681

$X(2^{-})$			
X(4150)	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135\pm28{}^{+59}_{-30}$
$X(1^{-})$			
X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ 18}_{- 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$
All $X(0^+)$			
X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$
X(4700)	17(18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$
${ m NR}_{J/\psi\phi}$	4.8(5.7)		
All $X(1^+)$			
X(4140)	13~(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162\pm21{}^{+24}_{-49}$
X(4274)	18(18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$
X(4685)	15(15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 {}^{+37}_{-41}$
All $Z_{cs}(1^+)$			
$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-} {}^{4}_{14}$	$131\pm15\pm26$
$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+ 43}_{- 30}$	$233 \pm 52 {}^{+ 97}_{- 73}$