

Isospin-1/2 $D\pi$ scattering and the lightest D_0^* resonance from lattice QCD

Based on [arXiv:2102.04973]

Speaker: Nicolas Lang^a Authors: L. Gayer, N. Lang, S. M. Ryan, D. Tims, C. E. Thomas, D. J. Wilson for the Hadron Spectrum Collaboration April 13, 2021

^aTrinity College Dublin

Introduction: D_0^* - the experimental puzzle

- D_0^* lightest scalar charm-light resonance
- First observed by Belle and FOCUS in 2004: broad enhancement at 2300 - 2400 MeV
- Quark model construction: $q\bar{q}$ in relative *P*-wave
- Measured mass in agreement with predictions by quark model but has a large width

BELLE Collaboration [arXiv:hep-ex/0307021]

- Charm-strange state D_{s0}^* the same from view of quark model
- Mass difference w.r.t. D_0^* due to different light-quark masses \rightarrow predicted above D_0^*
- However: observed as narrow peak below DK threshold well below predictions by quark model; perhaps below D_0^*
 - \rightarrow What is going on?
- Proximity in mass of these two states in experiment and differing widths require better theoretical understanding!

- Lattice QCD \rightarrow first principles approach to understand QCD dynamics
- On Lattice: D_0^* as part of $D\pi o D\pi$ scattering
- Existent lattice studies:
 - D_0^* in $D\pi
 ightarrow D\pi$ at $m_\pi=391~{
 m MeV^1}$
 - D^*_{s0} in DK
 ightarrow DK at both $m_\pi = 391~{
 m MeV}$ and $m_\pi = 239~{
 m MeV}^2$
- Goal: complete the picture; better understand the quark-mass dependence

¹G. Moir et al. [arXiv:1607.07093]

²G. K. C. Cheung et al. [arXiv:2008.06432]

Calculation details

- Lattice spacing: $a_s = 0.11$ fm, $a_t^{-1} = 6.079$ GeV
- $(L/a_s)^3 \times (T/a_t) = 32^3 \times 256 \rightarrow \text{spatial volume:} (3.6 \text{ fm})^2$
- Anisotropic lattice (a_t finer than a_s): $\xi \equiv a_s/a_t \approx 3.5$
- Scale set via comparison of Ω baryon masses $ightarrow m_\pi = 239 \; {
 m MeV}$
- $N_f = 2 + 1$ dynamical quark flavours
- 484 configurations

- Basis of interpolating operators (quark bilinears and meson-meson) with C = 1, l = 1/2 projected to irreducible representations (*irreps*) of the lattice
- Contractions make use of distillation framework³ with 256 vectors
- Principal correlators computed using GEV method: $C_{ij}(t)v_j^{(n)} = \lambda_n(t, t_0)C_{ij}(t_0)v_j^{(n)}$
- Correlator fits (sum of exponentials) \rightarrow Finite volume spectrum
- Infinite volume amplitudes obtained from fit of spectrum to solutions of Lüscher quantisation condition: det [1 + iρ(s) · t(s) · (1 + iM(s, L))] = 0

³Hadron Spectrum collaboration [arXiv:0905.2160]

Results

- Irreps are labelled $[\vec{d}]\Lambda^{(P)}$ with parity P and lattice momentum $\vec{P}=2\pi\vec{d}/L$
- At rest: neat separation of lowest partial waves
 - A_1^+ : S-wave
 - T_1^- : *P*-wave
 - E^+ : *D*-wave
- A_1^+ : additional level around $a_t E_{cm} = 0.37$; levels above and below shifted up and down respectively \rightarrow suggestive of non-trivial interactions

- T_1^- : level far below threshold; little interaction above threshold
- E⁺: level sits right on non-interacting energy
 → negligible D-wave interaction (we showed ^u/_σ)

 that the Dπ D-wave phase shift is consistent with zero)
- Higher partial waves will be ignored (threshold suppression $\propto k^{2l}$)

- Moving-frame \rightarrow rotational symmetry further broken \rightarrow further mixing of partial waves
- A₁ irreps have contributions from S- and P-wave
- $[110]B_1/B_2$ and $[100]E_2$ irreps have a contribution from $D^*\pi$ *S*-wave

- Parametric form of *t*-matrix undetermined by Lüscher condition for multiple partial waves
- Unitarity and anlyticity provide constraints
- Using a single parametrisation could introduce bias
- We use a range of different parametrisations:
 - K-matrix: $(t^{(\ell)})^{-1}(s) = \frac{1}{(2k)^{\ell}} K^{-1}(s) \frac{1}{(2k)^{\ell}} + I(s)$
 - Effective range
 - Breit Wigner
 - Unitarized chiral amplitude⁴

⁴Z.-H. Guo et al. [arXiv:1811.05585]

$D\pi$ P-wave and $D^*\pi$ S-wave

- Determined from spectrum fits in [000] T₁⁻, [100] E₂, [110] B₁ and [110] B₂
- Deeply bound level in all irreps \rightarrow $J^P = 1^- \ D^*$ bound state
- $D^*\pi$ S-wave \rightarrow contribution in moving frames
- Parametrisation: *K*-matrix with 2 channels with a pole term in *Dπ P*-wave
- Phase shift indicates very weak effect of *P*-wave above threshold

$D\pi$ S- and P-wave

- Fit of energy levels below Dππ threshold in A₁⁺, T₁⁻ & moving-frame A₁ irreps
- Excluding irreps that have $D^*\pi$ contribution
- Deeply bound level in all irreps with *P*-wave contribution; "extra" level in irreps with *S*-wave contribution
- Parametrisation: K-matrix for 2 partial waves, both containing a pole term

• Cluster of poles from 30 different parametrisations; all above threshold

 \rightarrow Resonance

- Amplitudes similar at real energies but differ in complex plane; pole common feature
- Scatter of poles: single parametrisation might underestimate uncertainties
- Mass and coupling considering all parametrisations:

$$\sqrt{s_0}/{
m MeV} = (2196 \pm 64) - rac{i}{2}(425 \pm 224)$$

 $c/{
m MeV} = (1916 \pm 776) \exp i\pi(-0.59 \pm 0.41)$

The big picture: Comparison with other calculations

$D\pi$ at different light-quark masses

- Earlier study of $D\pi \rightarrow D\pi$ at $m_{\pi} = 391$ MeV: shallow bound-state ($\approx 2 \pm 1$ MeV below threshold)
- At 239 MeV: pole migrates into complex plane (\approx 77 \pm 64 MeV above threshold)
- Mass below reported experimental value (despite heavier-than-physical light quarks)
- Strong coupling of poles to $D\pi$ channel in both cases

Study: parametrising $D\pi$ S-wave at different masses

- Comparison: *K*-matrix and Breit-Wigner
- Real parts of the poles are comatible between both parametrisations
- Breit-Wigner mass parameter incompatible with pole location

SU(3) flavour symmetry

When m_u = m_d = m_s π and K are rows of the same SU(3) octet
 → Dπ and DK scattering related by SU(3) flavour symmetry

 $\mathbf{\bar{3}}\otimes\mathbf{8}\rightarrow\mathbf{\bar{3}}\oplus\mathbf{6}\oplus\mathbf{\bar{15}}$

- Symmetry is less broken at heavier light-quark masses
- We expect the number of poles to stay the same as function of quark mass

q = -1 q = 0

 $\label{eq:https://en.wikipedia.org/wiki/Eightfold_way_(physics) - Creative Commons$

$D\pi$ and $D_s\bar{K}$ at different light-quark masses

- Locations of poles match expectation from SU(3) symmetry
- D_0^* shallow bound state at $m_\pi=391$ MeV - becomes a resonance at $m_\pi=239$ MeV
- Pole mass decreases with pion mass \rightarrow extrapolation to physical pion mass would suggest D_0^* well below D_{s0}^*
- D_{s0}^* bound at both masses

Conclusion

Conclusion and Outlook

- Found a D_0^* resonance pole at
 - mass $m = (2194 \pm 64)$ MeV (77 ± 64) MeV above $D\pi$ threshold
 - width $\Gamma = (425 \pm 224)~\text{MeV}$

from first principles (no external inputs after fixing quark masses)

- Considered a range of parametrisations (major contribution to uncertainty)
- Pole strongly coupled to $D\pi$ channel; coupling compatible with $D_{s0}^* \rightarrow DK$ (broken SU(3) flavour symmetry)
- Result indicates slight decrease in pole mass with decreasing pion mass
- Value significantly lower than currently reported experimental one \rightarrow puzzling D_0^* heavier than D_{s0}^* not reproduced by Lattice

Questions?

Backup

Correlators on the lattice

• Compute matrix of (euclidean) correlators:

$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle,$$

- $\mathcal{O}_i(t)$ have quantum numbers of $I = 1/2 \ D\pi$
- Find "optimal" interpolators by solving Generalised Eigenvalue (GEV) problem

$$C_{ij}(t)v_j^{(\mathfrak{n})} = \lambda_{\mathfrak{n}}(t,t_0)C_{ij}(t_0)v_j^{(\mathfrak{n})},$$

• Fit Principal correlators (eigenvalues):

$$\lambda_{\mathfrak{n}}(t,t_0) = (1-\mathcal{A}_{\mathfrak{n}})e^{-\mathcal{E}_{\mathfrak{n}}(t-t_0)} + \mathcal{A}_{\mathfrak{n}}e^{-\mathcal{E}_{\mathfrak{n}}'(t-t_0)}$$

Operator Table (S-wave)

$A_1^+[000]$	$A_1[100]$	$A_1[110]$	$A_1[111]$	$A_1[200]$
$D_{[000]} \pi_{[000]}$	$D_{[000]} \pi_{[100]}$	$D_{[000]} \pi_{[110]}$	$D_{[000]} \pi_{[111]}$	$D_{[100]} \pi_{[100]}$
$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[000]}$	$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D_{[110]} \pi_{[110]}$	$D_{[100]} \pi_{[110]}$	$D_{[110]} \pi_{[000]}$	$D_{[110]} \pi_{[100]}$	$D_{[200]} \pi_{[000]}$
$D_{[111]} \pi_{[111]}$	$D_{[100]} \pi_{[200]}$	$D_{[110]} \pi_{[110]}$	$D_{[111]} \pi_{[000]}$	$D_{[210]} \pi_{[100]}$
$D_{[000]} \eta_{[000]}$	$D_{[110]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$	$D_{[211]} \pi_{[100]}$	$D_{[200]} \eta_{[000]}$
$D_{[100]} \eta_{[100]}$	$D_{[110]} \pi_{[111]}$	$D_{[210]} \pi_{[100]}$	$D^*{}_{[110]}\pi_{[100]}$	
$D_{s[000]} \bar{K}_{[000]}$	$D_{[111]} \pi_{[110]}$	${D^*}_{[100]} \pi_{[100]}$	$D_{[111]} \eta_{[000]}$	
	$D_{[200]} \pi_{[100]}$	$D^*{}_{[111]}\pi_{[100]}$	$D_{s[111]} \ ar{K}_{[000]}$	
	$D_{[210]} \pi_{[110]}$	$D_{[110]} \eta_{[000]}$		
	$D_{[000]} \eta_{[100]}$	$D_{s[110]} \ \bar{K}_{[000]}$		
	$D_{[100]} \eta_{[000]}$			
	$D_{s[000]} \bar{K}_{[100]}$			
	$D_{s[100]} \bar{K}_{[000]}$			
$8 imesar\psi m \Gamma\psi$	$18 imesar{\psi}m{\Gamma}\psi$	$18 imesar{\psi}m{\Gamma}\psi$	$9 imesar\psi ar u \psi$	$16 imesar{\psi}m{\Gamma}\psi$

Operators used in the S-wave fits. Subscripts indicate momentum types. Γ represents some monomial of γ matrices and derivatives.

$T_1^{-}[000]$	$E_2[100]$	$B_1[110]$	$B_2[110]$
$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[111]}$
$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[100]}$	$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D^*{}_{[100]} \pi_{[100]}$	$D^*{}_{[000]} \pi_{[100]}$	$D_{[210]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$
	$D^*{}_{[100]} \pi_{[000]}$	$D^*{}_{[100]} \pi_{[100]}$	$D^*{}_{[000]} \pi_{[110]}$
		$D^*{}_{[110]}\pi_{[000]}$	$D^*{}_{[100]} \pi_{[100]} \{2\}$
			$D^*{}_{[110]}\pi_{[000]}$
			$D^*{}_{[111]}_{[100]}$
$6 imesar{\psi}\mathbf{\Gamma}\psi$	$18 imesar{\psi}m{\Gamma}\psi$	$18 imesar{\psi}m{\Gamma}\psi$	$20 imesar\psi{ar \Gamma}\psi$

Operators used in the P-wave fits. Subscripts indicate momentum types. Γ represents some monomial of γ matrices and derivatives. The number in curly parentheses indicates the number of operators of this momentum combination.

Operator basis variations

- Varying the basis affects the spectrum
- I = 1/2 allows both meson-meson and qq
 -like operator constructions
- Interpolating the complete spectrum requires both types of operator
- Other meson-meson operators do not play a significant role below coupled-channel threshold

- Two types of interpolating operator:
 - quark bilinears: $\bar{\psi} \Gamma D ... \psi$
 - meson-meson like operators: $\sum_{\vec{p_1}+\vec{p_2}=\vec{p}} C(\vec{p_1},\vec{p_2}) \Omega^{\dagger}_{M_1}(\vec{p_1}) \Omega^{\dagger}_{M_2}(\vec{p_2})$
- Rotational symmetry broken ⇒ eigenstates labelled by irreducible representations of O_h or LG(P) (irreps)
- Continuum spins *subduce* into one or more finite volume irreps; operators are projected into irreps
- Correlators are computed using distillation with 256 vectors

Subduction Table

Ŕ	Irrep	$J^P \ (ec{P} = ec{0})$	$D\pi J^P_{[N]}$	$D^*\pi J^P_{[N]}$
	Λ	$ \lambda ^{(ilde\eta)}~(ec P eq ec 0)$		
[000]	A_1^+	0+, 4+	0+,	
	T_1^-	1-, 3-	1-,	
	E^+	2+, 4+	2+,	
[<i>n</i> 00]	A_1	0 ⁽⁺⁾ , 4	0+, 1-, 2+,	
	E_2	1, 3	1^{-} , 2^{+} ,	1+,
[<i>nn</i> 0]	A_1	0 ⁽⁺⁾ , 2, 4	0 ⁺ , 1 ⁻ , 2 ⁺ _[2] ,	
	B_2, B_2	1, 3	1-, 2+,	1+,
[nnn]	A_1	0 ⁽⁺⁾ , 3	0+, 1-, 2+,	

Lowest $D\pi$ and $D^*\pi$ continuum J^P and helicity λ subductions by irrep

	a _t m		2. E.
π	0.03928(18)		at L threshold
K	0.09244(7)	$D\pi$	0.34851(21)
N	0.00344(7)	$D\pi\pi$	0.38779(27)
η	0.09299(56)		0.40000(E7)
D	0.30923(11)	$D\eta$	0.40222(57)
	0.00020(11)	$D_s \overline{K}$	0.40700(14)
D_s	0.32356(12)	$D^*\pi\pi$	0.40014(35)
D^*	0.33058(24)	DAN	0.10314(00)

Left: A summary of the stable hadron masses relevant for this calculation. Right: kinematic thresholds relevant for $I = 1/2 D\pi$ scattering.

From the spectrum to scattering amplitudes

 Need a mapping between finite-volume spectrum and infinite volume scattering amplitudes → Lüscher quantisation condition

$$\det \left[1+i\rho(s)\cdot \boldsymbol{t}(s)\cdot (1+i\mathcal{M}(s,L))\right]=0$$

- $\rho(s) = 2k(s)/\sqrt{s}$ with k(s) the COM-momentum function
- t(s) = infinite volume t-matrix
- $\mathcal{M}(s, L)$) encodes finite-volume effects (dense in partial waves)
- Procedure
 - solve equation (25) for a given parametrisation of t(s) to obtain a spectrum
 - vary the parameters in t(s) in a χ^2 -minimisation to best match the spectrum obtained from the lattice

Combined $D\pi S + P$ -wave and $D^*\pi S$ -wave

- Sanity check: Fit of all relevant partial waves below three-body threshold
- Fit of energy levels below $D\pi\pi$ threshold in all irreps we computed
- Parametrisation: *K*-matrix with 2 channels / 3 partial waves
- Pole term in $D\pi$ S- and P-wave
- Constant in $D^*\pi$ *S*-wave
- Results compatible with fit excluding $D^*\pi$

