Isospin- $1 / 2 D \pi$ scattering and the lightest D_{0}^{*} resonance from lattice QCD

Based on [arXiv:2102.04973]

Speaker: Nicolas Lang ${ }^{\text {a }}$
Authors: L. Gayer, N. Lang, S. M. Ryan, D. Tims, C. E. Thomas, D. J. Wilson
for the Hadron Spectrum Collaboration
April 13, 2021
${ }^{a}$ Trinity College Dublin

Introduction: D_{0}^{*} - the experimental puzzle

- D_{0}^{*} lightest scalar charm-light resonance
- First observed by Belle and FOCUS in 2004: broad enhancement at 2300-2400 MeV
- Quark model construction: $q \bar{q}$ in relative P-wave
- Measured mass in agreement with predictions by quark model but has a large width

BELLE Collaboration [arXiv:hep-ex/0307021]

Comparison: $D_{s 0}^{*}$

- Charm-strange state $D_{s 0}^{*}$ the same from view of quark model
- Mass difference w.r.t. D_{0}^{*} due to different light-quark masses \rightarrow predicted above D_{0}^{*}
- However: observed as narrow peak below DK threshold - well below predictions by quark model; perhaps below D_{0}^{*}
\rightarrow What is going on?
- Proximity in mass of these two states in experiment and differing widths require better theoretical understanding!

Enter: Lattice QCD

- Lattice QCD \rightarrow first principles approach to understand QCD dynamics
- On Lattice: D_{0}^{*} as part of $D \pi \rightarrow D \pi$ scattering
- Existent lattice studies:
- D_{0}^{*} in $D \pi \rightarrow D \pi$ at $m_{\pi}=391 \mathrm{MeV}^{1}$
- $D_{s 0}^{*}$ in $D K \rightarrow D K$ at both $m_{\pi}=391 \mathrm{MeV}$ and $m_{\pi}=239 \mathrm{MeV}^{2}$
- Goal: complete the picture; better understand the quark-mass dependence

[^0]
Calculation details

Calculation details

- Lattice spacing: $a_{s}=0.11 \mathrm{fm}, a_{t}^{-1}=6.079 \mathrm{GeV}$
- $\left(L / a_{s}\right)^{3} \times\left(T / a_{t}\right)=32^{3} \times 256 \rightarrow$ spatial volume: $(3.6 \mathrm{fm})^{2}$
- Anisotropic lattice (a_{t} finer than a_{s}): $\xi \equiv a_{s} / a_{t} \approx 3.5$
- Scale set via comparison of Ω baryon masses $\rightarrow m_{\pi}=239 \mathrm{MeV}$
- $N_{f}=2+1$ dynamical quark flavours

- 484 configurations

Lattice \rightarrow Amplitudes

- Basis of interpolating operators (quark bilinears and meson-meson) with $C=1$, $I=1 / 2$ projected to irreducible representations (irreps) of the lattice
- Contractions make use of distillation framework ${ }^{3}$ with 256 vectors
- Principal correlators computed using GEV method:

$$
C_{i j}(t) v_{j}^{(\mathfrak{n})}=\lambda_{\mathfrak{n}}\left(t, t_{0}\right) C_{i j}\left(t_{0}\right) v_{j}^{(\mathfrak{n})}
$$

- Correlator fits (sum of exponentials) \rightarrow Finite volume spectrum
- Infinite volume amplitudes obtained from fit of spectrum to solutions of Lüscher quantisation condition: $\operatorname{det}[1+i \boldsymbol{\rho}(s) \cdot \boldsymbol{t}(s) \cdot(1+i \mathcal{M}(s, L))]=0$

[^1]Results

Spectra at rest

- Irreps are labelled $[\vec{d}] \Lambda^{(P)}$ - with parity P and lattice momentum $\vec{P}=2 \pi \vec{d} / L$
- At rest: neat separation of lowest partial waves
- $A_{1}^{+}: S$-wave
- $T_{1}^{-}: P$-wave
- E^{+}: D-wave
- A_{1}^{+}: additional level around $a_{t} E_{\mathrm{cm}}=0.37$; levels above and below shifted up and down respectively \rightarrow suggestive of non-trivial interactions

A_{1}^{+}

Spectra at rest

- T_{1}^{-}: level far below threshold; little interaction above threshold
- E^{+}: level sits right on non-interacting energy \rightarrow negligible D-wave interaction (we showed that the $D \pi D$-wave phase shift is consistent with zero)
- Higher partial waves will be ignored (threshold suppression $\propto k^{2 \prime}$)

Spectra at non-zero momentum

- Moving-frame \rightarrow rotational symmetry further broken \rightarrow further mixing of partial waves
- A_{1} irreps have contributions from S - and P-wave
- $[110] B_{1} / B_{2}$ and $[100] E_{2}$ irreps have a contribution from $D^{*} \pi S$-wave

t-matrix Parametrisations

- Parametric form of t-matrix undetermined by Lüscher condition for multiple partial waves
- Unitarity and anlyticity provide constraints
- Using a single parametrisation could introduce bias
- We use a range of different parametrisations:
- K-matrix: $\left(t^{(\ell)}\right)^{-1}(s)=\frac{1}{(2 k)^{\ell}} K^{-1}(s) \frac{1}{(2 k)^{e}}+I(s)$
- Effective range
- Breit Wigner
- Unitarized chiral amplitude ${ }^{4}$

[^2]
$D \pi \mathrm{P}$-wave and $D^{*} \pi$ S-wave

- Determined from spectrum fits in [000] $T_{1}^{-},[100] E_{2},[110] B_{1}$ and [110] B_{2}
- Deeply bound level in all irreps \rightarrow $J^{P}=1^{-} D^{*}$ bound state
- $D^{*} \pi$ S-wave \rightarrow contribution in moving frames
- Parametrisation: K-matrix with 2 channels with a pole term in $D \pi P$-wave
- Phase shift indicates very weak effect
 of P-wave above threshold

$D \pi$ S- and P-wave

- Fit of energy levels below $D \pi \pi$ threshold in A_{1}^{+}, T_{1}^{-}\& moving-frame A_{1} irreps
- Excluding irreps that have $D^{*} \pi$ contribution
- Deeply bound level in all irreps with P-wave contribution; "extra" level in irreps with S-wave contribution
- Parametrisation: K-matrix for 2 partial waves, both containing a pole
 term

Poles

- Cluster of poles from 30 different parametrisations; all above threshold
\rightarrow Resonance
- Amplitudes similar at real energies but differ in complex plane; pole common feature
- Scatter of poles: single parametrisation might underestimate uncertainties
- Mass and coupling considering all parametrisations:

$$
\begin{aligned}
\sqrt{s_{0}} / \mathrm{MeV} & =(2196 \pm 64)-\frac{i}{2}(425 \pm 224) \\
c / \mathrm{MeV} & =(1916 \pm 776) \exp i \pi(-0.59 \pm 0.41)
\end{aligned}
$$

The big picture: Comparison with other calculations

$D \pi$ at different light-quark masses

- Earlier study of $D \pi \rightarrow D \pi$ at $m_{\pi}=391 \mathrm{MeV}$: shallow bound-state ($\approx 2 \pm 1 \mathrm{MeV}$ below threshold)
- At 239 MeV : pole migrates into complex plane $(\approx 77 \pm 64 \mathrm{MeV}$ above threshold)
- Mass below reported experimental value (despite
heavier-than-physical light quarks)

- Strong coupling of poles to $D \pi$ channel in both cases

Study: parametrising $D \pi S$-wave at different masses

- Comparison: K-matrix and Breit-Wigner
- Real parts of the poles are comatible between both parametrisations
- Breit-Wigner mass parameter incompatible with pole location

SU(3) flavour symmetry

- When $m_{u}=m_{d}=m_{s} \pi$ and K are rows of the same $\operatorname{SU}(3)$ octet
$\rightarrow D \pi$ and $D K$ scattering related by $\mathrm{SU}(3)$
flavour symmetry

$$
\overline{\mathbf{3}} \otimes \mathbf{8} \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}
$$

- Symmetry is less broken at heavier light-quark masses
- We expect the number of poles to stay the same as function of quark mass

$D \pi$ and $D_{s} \bar{K}$ at different light-quark masses

- Locations of poles match expectation from SU(3) symmetry
- D_{0}^{*} shallow bound state at $m_{\pi}=391$ MeV - becomes a resonance at $m_{\pi}=239 \mathrm{MeV}$
- Pole mass decreases with pion mass
\rightarrow extrapolation to physical pion mass would suggest D_{0}^{*} well below $D_{s 0}^{*}$

- $D_{s 0}^{*}$ bound at both masses

Conclusion

Conclusion and Outlook

- Found a D_{0}^{*} resonance pole at
- mass $m=(2194 \pm 64) \mathrm{MeV}$ - $(77 \pm 64) \mathrm{MeV}$ above $D \pi$ threshold
- width $\Gamma=(425 \pm 224) \mathrm{MeV}$
from first principles (no external inputs after fixing quark masses)
- Considered a range of parametrisations (major contribution to uncertainty)
- Pole strongly coupled to $D \pi$ channel; coupling compatible with $D_{s 0}^{*} \rightarrow D K$ (broken SU(3) flavour symmetry)
- Result indicates slight decrease in pole mass with decreasing pion mass
- Value significantly lower than currently reported experimental one \rightarrow puzzling D_{0}^{*} heavier than $D_{s 0}^{*}$ not reproduced by Lattice

Questions?

Backup

Correlators on the lattice

- Compute matrix of (euclidean) correlators:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle,
$$

- $\mathcal{O}_{i}(t)$ have quantum numbers of $I=1 / 2 D \pi$
- Find "optimal" interpolators by solving Generalised Eigenvalue (GEV) problem

$$
C_{i j}(t) v_{j}^{(\mathfrak{n})}=\lambda_{\mathfrak{n}}\left(t, t_{0}\right) C_{i j}\left(t_{0}\right) v_{j}^{(\mathfrak{n})}
$$

- Fit Principal correlators (eigenvalues):

$$
\lambda_{\mathfrak{n}}\left(t, t_{0}\right)=\left(1-A_{\mathfrak{n}}\right) e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}+A_{\mathfrak{n}} e^{-E_{\mathfrak{n}}^{\prime}\left(t-t_{0}\right)}
$$

Operator Table (S-wave)

$A_{1}^{+}[000]$	$A_{1}[100]$	$A_{1}[110]$	$A_{1}[111]$	$A_{1}[200]$
$D_{\text {[000] }} \pi_{\text {[000] }}$	$D_{[000]} \pi_{[100]}$	$D_{[000]} \pi_{[110]}$	$D_{[000]} \pi_{[111]}$	$D_{\text {[100] }} \pi_{[100]}$
$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[000]}$	$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D_{[110]} \pi_{[110]}$	$D_{[100]} \pi_{[110]}$	$D_{[110]} \pi_{[000]}$	$D_{[110]} \pi_{[100]}$	$D_{[200]} \pi_{[000]}$
$D_{[111]} \pi_{[111]}$	$D_{[100]} \pi_{[200]}$	$D_{[110]} \pi_{[110]}$	$D_{[111]} \pi_{[000]}$	$D_{[210]} \pi_{[100]}$
$D_{[000]} \eta_{[000]}$	$D_{[110]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$	$D_{[211]} \pi_{[100]}$	$D_{[200]} \eta_{[000]}$
$D_{[100]} \eta_{[\underline{[100]}}$	$D_{[110]} \pi_{[111]}$	$D_{[210]} \pi_{[100]}$	$D^{*}{ }_{[110]} \pi_{[100]}$	
$D_{s[000]} \bar{K}_{[000]}$	$D_{[111]} \pi_{[110]}$	$D^{*}{ }_{[100]} \pi_{[100]}$	$D_{[111]} \eta_{[\underline{000]}}$	
	$D_{[200]} \pi_{[100]}$	$D^{*}{ }_{[111]} \pi_{[100]}$	$D_{s[111]} \bar{K}_{[000]}$	
	$D_{\text {[210] }} \pi_{[110]}$	$D_{\text {[110] }} \eta_{[000]}$		
	$D_{\text {[000] }} \eta_{[100]}$	$D_{s[110]} \bar{K}_{[000]}$		
	$D_{\text {[100] }} \eta_{\text {[000] }}$			
	$D_{s[000]} \bar{K}_{[100]}$			
	$D_{s[100]} \bar{K}_{[000]}$			
$8 \times \bar{\psi} \mathbf{\Gamma} \psi$	$18 \times \bar{\psi} \boldsymbol{\Gamma} \psi$	$18 \times \bar{\psi} \boldsymbol{\Gamma} \psi$	$9 \times \bar{\psi} \boldsymbol{\Gamma} \psi$	$16 \times \bar{\psi} \boldsymbol{\Gamma} \psi$

Operators used in the S-wave fits. Subscripts indicate momentum types. $\boldsymbol{\Gamma}$ represents some monomial of γ matrices and derivatives.

Operator Table (P-wave)

$T_{1}^{-}[000]$	$E_{2}[100]$	$B_{1}[110]$	$B_{2}[110]$
$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[111]}$
$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[100]}$	$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D^{*}{ }_{[100]} \pi_{[100]}$	$D^{*}{ }_{[000]} \pi_{[100]}$	$D_{[210]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$
	$D^{*}{ }_{[100]} \pi_{[000]}$	$D^{*}{ }_{[100]} \pi_{[100]}$	$D^{*}{ }_{[000]} \pi_{[110]}$
		$D^{*}{ }_{[110]} \pi_{[000]}$	$D^{*}{ }_{[100]} \pi_{[100]}\{2\}$
			$D^{*}{ }_{[110]} \pi_{[000]}$
			$D^{*}{ }_{[111]} \pi_{[100]}$
$6 \times \bar{\psi} \mathbf{\Gamma} \psi$	$18 \times \bar{\psi} \mathbf{\Gamma} \psi$	$18 \times \bar{\psi} \mathbf{\Gamma} \psi$	$20 \times \psi \bar{\psi} \psi$

Operators used in the P-wave fits. Subscripts indicate momentum types. Γ represents some monomial of γ matrices and derivatives. The number in curly parentheses indicates the number of operators of this momentum combination.

Operator basis variations

- Varying the basis affects the spectrum
- $I=1 / 2$ allows both meson-meson and $q \bar{q}$-like operator constructions
- Interpolating the complete spectrum requires both types of operator
- Other meson-meson operators do not play a significant role below coupled-channel threshold

How are operators constructed?

- Two types of interpolating operator:
- quark bilinears: $\bar{\psi}\ulcorner D \ldots \psi$
- meson-meson like operators: $\sum_{\overrightarrow{p_{1}}+\overrightarrow{p_{2}}=\vec{p}} \mathcal{C}\left(\overrightarrow{p_{1}}, \overrightarrow{p_{2}}\right) \Omega_{M_{1}}^{\dagger}\left(\overrightarrow{p_{1}}\right) \Omega_{M_{2}}^{\dagger}\left(\overrightarrow{p_{2}}\right)$
- Rotational symmetry broken \Rightarrow eigenstates labelled by irreducible representations of O_{h} or $L G(\vec{P})$ (irreps)
- Continuum spins subduce into one or more finite volume irreps; operators are projected into irreps
- Correlators are computed using distillation with 256 vectors

Subduction Table

\vec{P}	$\begin{aligned} & \text { Irrep } \\ & \wedge \end{aligned}$	$\begin{aligned} & J^{P}(\vec{P}=\overrightarrow{0}) \\ & \|\lambda\|^{(\vec{\eta})}(\vec{P} \neq \overrightarrow{0}) \end{aligned}$	$D \pi J_{[N]}^{P}$	$D^{*} \pi J_{[N]}^{P}$
[000]	A_{1}^{+}	$0^{+}, 4^{+}$	$0^{+}, \ldots$	\ldots
	T_{1}^{-}	$1^{-}, 3^{-}$	$1^{-}, \ldots$...
	E^{+}	$2^{+}, 4^{+}$	$2^{+}, \ldots$...
[$n 00$]	A_{1}	$0^{(+)}, 4$	$0^{+}, 1^{-}, 2^{+}, \ldots$	
	E_{2}	1,3	$1^{-}, 2^{+}, \ldots$	$1^{+}, \ldots$
[$n n 0$]	A_{1}	$0^{(+)}, 2,4$	$0^{+}, 1^{-}, 2_{[2]}^{+}, \ldots$	\ldots
	B_{2}, B_{2}	1,3	$1^{-}, 2^{+}, \ldots$	$1^{+}, \ldots$
[nnn]	A_{1}	$0^{(+)}, 3$	$0^{+}, 1^{-}, 2^{+}, \ldots$...

Lowest $D \pi$ and $D^{*} \pi$ continuum J^{P} and helicity λ subductions by irrep

Masses and thresholds

	$a_{t} m$
π	$0.03928(18)$
K	$0.08344(7)$
η	$0.09299(56)$
D	$0.30923(11)$
D_{s}	$0.32356(12)$
D^{*}	$0.33058(24)$

	$a_{t} E_{\text {threshold }}$
$D \pi$	$0.34851(21)$
$D \pi \pi$	$0.38779(27)$
$D \eta$	$0.40222(57)$
$D_{s} \bar{K}$	$0.40700(14)$
$D^{*} \pi \pi$	$0.40914(35)$

Left: A summary of the stable hadron masses relevant for this calculation. Right: kinematic thresholds relevant for $I=1 / 2 D \pi$ scattering.

From the spectrum to scattering amplitudes

- Need a mapping between finite-volume spectrum and infinite volume scattering amplitudes \rightarrow Lüscher quantisation condition

$$
\operatorname{det}[1+i \boldsymbol{\rho}(s) \cdot \boldsymbol{t}(s) \cdot(1+i \boldsymbol{M}(s, L))]=0
$$

- $\rho(s)=2 k(s) / \sqrt{s}$ with $k(s)$ the COM-momentum function
- $\boldsymbol{t}(s)=$ infinite volume t-matrix
- $\mathcal{M}(s, L))$ encodes finite-volume effects (dense in partial waves)
- Procedure
- solve equation (25) for a given parametrisation of $\boldsymbol{t}(s)$ to obtain a spectrum
- vary the parameters in $\boldsymbol{t}(s)$ in a χ^{2}-minimisation to best match the spectrum obtained from the lattice

Combined $D \pi S+P$-wave and $D^{*} \pi S$-wave

- Sanity check: Fit of all relevant partial waves below three-body threshold
- Fit of energy levels below $D \pi \pi$ threshold in all irreps we computed
- Parametrisation: K-matrix with 2 channels / 3 partial waves
- Pole term in $D \pi S$ - and P-wave
- Constant in $D^{*} \pi S$-wave
- Results compatible with fit excluding $D^{*} \pi$

[^0]: ${ }^{1}$ G. Moir et al. [arXiv:1607.07093]
 ${ }^{2}$ G. K. C. Cheung et al. [arXiv:2008.06432]

[^1]: ${ }^{3}$ Hadron Spectrum collaboration [arXiv:0905.2160]

[^2]: ${ }^{4}$ Z.-H. Guo et al. [arXiv:1811.05585]

