First Analysis of World Polarized DIS Data in the Small-x Dipole Formalism

arXiv: 2102.06159

Matthew D. Sievert

<u>Coauthors:</u> D. Adamiak, Y. Kovchegov, W. Melnitchouk, D. Pitonyak, N. Sato

9th Workshop of the APS Topical Group on Hadron Physics

M. Sievert

April 16, 2021

1/12

Motivation: Origin of the Proton Spin

Aschenauer et al., Phys. Rev. D92 (2015) no. 9 094030

- Determination of the partonic origin of proton spin requires extrapolation to x=0
- Extractions based on DGLAP are not predictive of the x dependence
 Inevitable that the uncertainty blows up once data constraints run out
 Controlled extrapolation to x=0 requires a theory which predicts spin at small x

M. Sievert

Small-x Global Analysis of Polarized DIS

2 / 12

Spin at Small x: Beyond the Eikonal Framework

$$\Delta q^{+}(x,Q^{2}) = \frac{N_{c}}{2\pi^{3}} \int_{\Lambda^{2}/s}^{1} \frac{d\beta}{\beta} \int_{1/\beta s}^{r_{\max}^{2}} \frac{dr_{10}^{2}}{r_{10}^{2}} G_{q}(r_{10}^{2},\beta s),$$

$$s = Q^2/x$$
 $r_{\max}^2 = \min\{1/\Lambda^2, 1/(\beta Q^2)\}$

en.

- At large x, DIS is dominated by a "Knockout" process
 At small x, the leading channel is a "dipole" process
- Leading-power dipole scattering is spin-independent
 Pure eikonal Wilson lines (gluons)
- Spin at small x selects on different, sub-eikonal dynamics
 > Spin observables are sensitive to novel small-x physics

3 / 12

M. Sievert

Helicity Evolution at Small x

- Spin information from the valence sector (large x) is transmitted to small x by spin-dependent branching
 See also Bartels, Ermolaev, Ryskin, Z. Phys. C70 (1996)
- **Suppressed** by the **coupling** α_s but **enhanced** by the **phase space** $\ln \frac{1}{r}$
 - Resummation leads to quantum evolution of spin at small x
 - > Analogous to **BFKL evolution** for unpolarized gluons

M. Sievert

Polarized vs. Unpolarized Small-x Evolution

Longitudinal + transverse logarithmic phase space $dP \sim \alpha_s \frac{dx}{x} \frac{d^2k}{k_T^2}$

- <u>Unpolarized (BFKL) evolution:</u>
 - > **Transverse logs cancel** (neutrality in the IR, transparency in the UV)
 - > Only longitudinal phase space is logarithmic: $\alpha_s \ln \frac{1}{x} \sim O(1)$
- Polarized (KPS) evolution:

M. Sievert

- > No transparency of spin: dominance of UV transverse logs
- > **Double-logarithmic** evolution: $\alpha_s \ln^2 \frac{1}{\gamma} \sim O(1)$
- Sensitive to lifetime ordering (c.f. NLO BFKL), less sensitive to saturation

The KPS Evolution Equations

- **Double-logarithmic evolution** equations written with logarithmic variables η , s_{10}
- Infinite tower of operators only closes in certain limits (<u>large-N_c</u> or large-<u>N_c&N_f</u>)
- Auxiliary **"neighbor dipole" function Γ** necessary to enforce lifetime ordering

M. Sievert

The Ambition: Bayesian Global Analysis of Polarized DIS

- **Previous estimates:**
 - > Potentially substantial contribution to the proton spin from small-x quarks
 - **Exploratory methods**: instantaneous transition from large-x fit (DSSV) to powerlaw asymptotics of KPS evolution

This work:

- > JAM Bayesian analysis code N. Sato et al., Phys. Rev. D93 (2016) $A_1 \approx \frac{g_1}{F_1}$
- Global analysis of world polarized DIS data (SLAC, EMC, SMC, COMPASS, HERMES)
- **Proton, "neutron"** (d, ³He) targets
- > **Inclusive DIS** only
 - > Avoid complication of fragmentation

Small-x Global Analysis of Polarized DIS

 $A_{\parallel} \propto A_1$

$$\begin{array}{l} \label{eq:Data Cuts: $N_{pts} = 122$} \\ x < 0.1$ \\ Q^2 > 1.69 \, {\rm GeV}^2$ \\ W^2 > 4 \, {\rm GeV}^2 \end{array}$$

7 / 12

The Approach

- 1. Parameterize an initial condition for the polarized dipole amplitude at large $x > x_0$
 - Generalized form of Born approximation
 - Frozen initial condition at x > x₀
- **2.** Solve KPS eqns. numerically for $x < x_0$ to determine g_1 structure function
- 3. Compute spin asymmetries A₁, A_∥ and compare with experimental data
 F₁ taken from previous JAM fits
- **4. Scan parameter space** using Bayesian inference with JAM Monte Carlo framework

M. Sievert

6 parameters scanned $(a, b, c \text{ for } p, n) + x_0, \Lambda$

$$G_q^{(0)}(s_{10},\eta) = a_q \,\eta + b_q \,s_{10} + c_q$$

$$\Delta q^{+}(x,Q^{2}) = \frac{1}{\alpha_{s}\pi^{2}} \int_{0}^{\eta_{\max}} d\eta \int_{s_{10}}^{\eta} ds_{10} G_{q}(s_{10},\eta)$$

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q^+(x,Q^2)$$

$$A_1 \approx \frac{g_1}{F_1} \qquad A_{\parallel} \propto A_1$$

8/12

The KPS Formalism is Able to Describe World Data

Nontrivial test: purely small-x theory is able to describe the world DIS data

Most constraining: a few data points below x = 0.01

JAMsmallx:
$$\chi^2/N_{pts} = 1.01$$

c.f. JAM16:
$$\chi^2/N_{pts} = 1.07$$

9 /

12

M. Sievert

Results: Prediction of Stronger Negative g1

- Large, negative g₁ is a robust prediction of the analysis
 - Data requires that the dominant term be negative
 - Predictive power at small x: controlled error in extrapolation

Fails for too-large x (as expected)

$$rac{\chi^2}{DOF} = 5.66 \text{ for } x_0 = 0.3$$

M. Sievert

Error band: Bayesian 1σ confidence level Statistical impact of **EIC data** (thin red band)

DSSV: de Florian et al., Phys. Rev. Lett. **113** (2014), Phys. Rev. **D100** (2019)

10 / 12

EIC Projections and Flavor Separation from A_{PV}

- Inclusive DIS on the proton, "neutron" alone are not sufficient for (u, d, s) flavor decomposition
- Instead of SIDIS, an alternative the **parityviolating asymmetry** A_{PV} (γ/Z interference)
- We estimate the **impact of EIC data** > 100 fb^{-1} ; (A_{\parallel}, A_{PV}) ; $(p, d, {}^{3}\text{He})$
- Constraints of high-precision data on polarized PDFs

M. Sievert

Big improvement in the unmeasured region

Future Outlook

- Proof of principle for a global analysis based on small-x helicity evolution
 - Consistent with existing DIS data
 - Extrapolation with predictive power at small x
- Significant room for theory improvements
 - > Single-logarithmic corrections
 - Running coupling
 - > Large- $N_c \& N_f$ limit

Y. Kovchegov, Y. Tawabutr, JHEP **08** (2020)

- Modification of evolution equations
- Qualitatively new features
- Further phenomenology: SIDIS

M. Sievert

12 / 12