Extending lattice PDF computations to new theoretical regimes

GHP 2021

Nikhil Karthik

JLab and WM

Based on papers accepted in PRD:

arXiv 2101.11632 by X. Gao, NK, S. Mukherjee, P. Petreczky, S. Syritsyn, Y. Zhao arXiv 2101.02224 by NK

LaMET and SDF methodologies

Distill leading-twist terms from Euclidean matrix elements at large-hadron momentum and/or short-distances

X. Ji '13 A. Radyushkin '17 V. Braun, D. Muller '08

$$\mathcal{M}(P_z z, z^2) = \langle H(\vec{P}) | \overline{\psi_{(0)\gamma_t}} \psi(z) | H(\vec{P}) \rangle$$

Perturbative matching

$$\overline{\psi}(0)\gamma_{+}$$

$$\mathcal{M}(P^{+}z_{-}) = \langle H(\vec{P})| \qquad |H(\vec{P})\rangle$$

$$\psi(z_{-})$$

LaMET and SDF methodologies

Distill leading-twist terms from Euclidean matrix elements at large-hadron momentum and/or short-distances

Methodology leads to estimates of PDFs and Mellin moments that are more-or-less consistent with phenomenological determinations.

Valence pion PDF determination employing LaMET/SDF

PRD102 (2020), 094513

LaMET and SDF methodologies

Distill leading-twist terms from Euclidean matrix elements at large-hadron momentum and/or short-distances

PRD102 (2020), 094513

Methodology leads to estimates of PDFs and Mellin moments that are more-or-less consistent with phenomenological determinations.

Valence pion PDF determination employing LaMET/SDF

Progressing towards precision studies

- Control higher-twist
- Lattice-spacing effects at z~O(a)
- Sensitivity to higher Mellin moments
- Inverse problem

. . . .

Motivation for this talk:

Can we use [lattice QCD + LaMET/SDF] methodology as a "theoretical collider" to learn about QCD and the non-perturbative origin of PDFs by studying cases not experimentally accessible?

pion PDF in QCD and QCD-like theories

Previous approaches DSE, BSE, Holography, ...

- ** What is the nature of the large-x (1-x)b behavior? (X. Gao's talk)
- ** What happens to the quark-structure when pion is radially excited?
- ** How is the quark structure of the Goldstone pion sensitive to the symmetry-broken vacuum structure?

How does quark structure change when pion is radially excited?

Pi(1300): non-Goldstone 0⁻ meson to compare and contrast with the Goldstone 0⁻

Theoretical expections in the chiral limit :
$$m_q o 0$$

$$M_{\pi} o 0 \qquad \qquad M_{\pi'} o \# \Lambda_{\rm QCD}$$

$$F_{\pi} o \# \Lambda_{\rm QCD} \qquad \qquad F_{\pi'} o 0$$

Previous lattice works: Mastropas, Richards '14 McNeile, Michael '06

Are there tell-tale differences in their partonic structures?

Method for the first go at this problem:

Perform the study In fixed finite volume: convert resonance into a finite volume eigenstate

Method for the first go at this problem:

Perform the study In fixed finite volume: convert resonance into a finite volume eigenstate

Use local pion creation operators to suppress contributions from multi-particle states

$$\bar{u}d|0\rangle = c_0|\pi\rangle + c_1|\pi\prime\rangle + c_2|\pi,\rho\rangle + c_3|\pi,\pi,\pi\rangle + \dots$$

Method for the first go at this problem:

Perform the study In fixed finite volume: convert resonance into a finite volume eigenstate

Use local pion creation operators to suppress contributions from multi-particle states

$$\bar{u}d|0\rangle = c_0|\pi\rangle + c_1|\pi\prime\rangle + c_2|\pi,\rho\rangle + c_3|\pi,\pi,\pi\rangle + \dots$$

Room for lot of improvements: Luscher method, GEVP with extended operator basis,...

The 1st excited state in pion 2-pt function follows single-particle dispersion with mass close to that of pi(1300)

$$\left\langle \hat{\pi}(t_s)^{\frac{\overline{\psi}(0)}{W(0,z)}} \hat{\pi}^{\dagger}(0) \right\rangle = \sum_{i,j} A_i^* A_j h_{ij}(z, P_z) e^{-E_i(t_s - \tau) - E_j \tau}$$

Fit ground state h_{00} and excited state h_{11}

$$\zeta = \frac{2M_{\pi'}\langle x \rangle_{\pi'} - 2M_{\pi}\langle x \rangle_{\pi}}{M_{\pi'} - M_{\pi}}$$

$$\approx 80 - 99\%$$

PDF reconstructed based on $x^a(1-x)^b$ Ansatz

> Pi(1300) valence **PDF**

pion valence PDF in the same ensemble

How is the internal structure of Nambu-Goldstone mode affected by the long-distance vacuum structure?

Slowly change strength of symmetry-breaking and record how PDFs change?

Slowly change strength of symmetry-breaking and record how PDFs change?

Specify theory (QCD) — Ratio of mass-gaps
Automatically given

Slowly change strength of symmetry-breaking and record how PDFs change?

Slowly change strength of symmetry-breaking and record how PDFs change?

R. Pisarski '84
T. Appelquist et al, '86
Lot of literature till now

A model QFT: 2+1d SU(2) gauge theory coupled to massless N fermion flavors

- Computationally cheaper to do.
- Most important physics reason: parallel theoretical developments in 2+1d in understanding confinement and mass-gap via classification of RG flows; e.g., conformal bootstrap.

Mapping the IR phase diagram of 2+1d massless QCD

Mapping the IR phase diagram of 2+1d massless QCD

Analysis

 $\tilde{\mathcal{M}}(z_1, P_1) = 1 + \left[\sum_{k=1}^{N_{\text{max}}} (-1)^k \frac{(z_1 P_1)^{2k}}{(2k)!} \langle x^{2k} \rangle_v \right] + \text{H.T.}$

- Fit moments as fit parameters
- PDF Ansatz fit assuming $f(x) \sim x^{\alpha} (1-x)^{\beta}$

How ITD/LF-correlation changes when decay-constant is increased.

Effect on moments 0.450.40.350.3 $\stackrel{\stackrel{\circ}{s}}{\underset{(s)}{(s)}} 0.25$ 0.150.1 0.050.02 $F_{\pi}^{2}g^{-2}$ 0.06 0.08 0.1

Increased IR sensitivity of PDF shape observables

Cumulants of PDF more sensitivity to IR

$$\kappa_n \equiv \frac{\partial^n}{\partial s^n} \log \left(\int_{-1}^1 f_{u-d}(x) e^{sx} dx \right) \Big|_{s=0}
\kappa_4 = \langle x^4 \rangle_v - 3 \langle x^2 \rangle_v^2,
\kappa_6 = \langle x^6 \rangle_v - 15 \langle x^2 \rangle_v \langle x^4 \rangle_v + 30 \langle x^2 \rangle_v^3.$$

The main observation: broadening of pion PDF when the strength of symmetry-breaking is *dialed-up*

Summary and outlook

Ab intio lattice determination of PDF using LaMET/SDF successful

Precision PDF determination as pheno input and global analysis

A new theoretical tool to understand QCD

Structure of Large N_c mesons

Extension to QCD-like theories

Structure of all low-lying hadrons and resonances

example-1:

Low moments of pi(1300) ~2 x pion

example-2:

Establish correlation of NG boson structure with IR by controlling SSB:

Couple N flavors of massless quarks