#### Luka Leskovec

ODU & JLab

in collaboration with: R. Briceño and J. Dudek

ALLOSE ALLES VIE Z

#### On determining coupled-channel photoproduction amplitudes in finite-volume

9th Workshop of the APS Topical Group on Hadronic Physics 13-16 April 2021 Virtual

shining a light on hadrons

#### Vanilla Resonances





Most Resonances Couple To Multiple Channels

#### Resonances



#### Status



# Photo-Production: $\gamma^* \chi \rightarrow \varphi_1 \varphi_1 | \varphi_2 \varphi_2$



# Generating Toy-Model Data

# lattice QCD is finite volume



- \* box
  - \* side L
  - \*  $\psi(x + L) = \psi(x)$

\* discrete spectrum

### scattering in finite volume



#### states in finite volume



#### transitions in finite volume



# synthetic data

- \* spectrum
  - \* discrete  $E_n$
  - \* 5 frames
  - \*  $(m_1 L = 5)$
- \* transition
  - \*  $(Q^2, E_n)$ \*  $\mathcal{F}_L$



3

Analyzing The Data

# can we reproduce *M*?



## How To Define A Resonance?



analytically continue *M* to pole
decompose as

$$\mathcal{M}_{ij} \approx \frac{c_i c_j}{s_P - s}$$

3. pole and residues/couplings!

### can we reproduce *M*?



#### can we reproduce *M*?



Guo et al., 1211.0929





1. analytically continue  $\mathscr{H}_i$  to pole 2. decompose as  $C_i \mathscr{F}_p(O^2)$ 

$$\mathcal{H}_i \approx \frac{c_i \mathcal{F}_R(\mathcal{Q})}{s_P - s}$$

3. coupling at pole at different  $Q^2$ 



## can we reproduce *H*?



# Summary

- \* toy model spectrum + transitions
- finite volume
- analysis reproduces input
- now we can do lattice QCD calculations
- insight into hadrons

