The sPHENIX Experiment at RHIC

Justin Frantz
GHP 2021 APS GHP Topical Group Meeting
Ohio University
4/14/21
The sPHENIX experiment was designed to address the latest questions in the study of the QGP

- Completely replaces PHENIX experiment in RHIC IR Bldg 1008 with very different optimized design for specific observables – jets and HF quarkonia
- Completely new collaboration with many new non-PHENIX members

sPHENIX Goals (2015 LRP):

1) Probe **Inner structure** of QGP with jets and other probes of wide range of Q^2 and color charge/ flavor
 - Real, Virtual, Dressed q/g’s? Scaleless strongly interacting plasma w/o quasiparticles? Entangled states?

2) Explore **T-dependent QGP Structure** by observing directly comparable jet modifications of longer-at-T_c QGP in **RHIC vs LHC comparison**
sPHENIX Science : QGP Formation

• 3) A third question matured after the 2015 LRP process: how does the QGP emerge with collision system size p+p → A+A

• This makes smaller collision system - (e.g. p+A) running more prominent

• Carefully need to disentangle from non-QGP/non-collective traditional medium energy nuclear and hadron structure effects. **Hard probes essential!!!!**

Small jet suppression in He+Au/d+Au ?

![Graph](image)

\[\sim v_2^2 \]

sPHENIX Science: “Cold” QCD

• sPHENIX will also be able to study Medium-energy QCD topics (we call them “cold” QCD)
 • p+p even p+A running will of course be polarized
 • many on sPHENIX are interested, but not a “crowded” area

• Obvious connection to EIC physics—ECCE consortium/collaboration: reuse much of sPHENIX for the EIC
• Optimized for uniformity for jet response and compactness
• High rate DAQ (15 kHz) - Tracking streaming readout mode possible
 • Record substantial fraction of unbiased MB Au+Au luminosity – nearly all
 • Also along w/ Uniformity: Unbiased jet triggering in p+p
 • Beam crossing angle in introduced for greater focus on AuAu MB
sPHENIX Calorimeters

- **Total Calorimeter System (EMC+HCal) system**: $-|\eta| < 1.1$, Hermetic ϕ
- Common SiPM Light Collection Devices -5.5λ **-Novel Technology !!!**

- **EMC**: $-\Delta\eta \times \Delta\phi$ 0.025 x 0.025 W powder/Spacal Fibers $-18 \chi_0$ -1λ
 - EMC Towers Projective ϕ & η -Inside Magnet

- **IHCAL/OHCal**: -0.1×0.1 Novel “Tilted Shashlik” geometry -Projective in η
 - Steel/Al scintillating tiles /embedded WLS -OHCal also flux return
 - $3.8 \lambda / 0.25 \lambda$ (Outer/Inner) -IHCal inside Magnet

Figure 5.3: Hamamatsu S12572 MPPC (SiPM). The device is 3×3 mm2 with 40,000 pixels 15μm2.

4/14/2021

J. Frantz - sPHENIX@RHIC
• Intermediate Silicon Tracker (INTT) - 2 layers of strip silicon sensors

• Time Projection Chamber (TPC) - **Compact**: $20 < r \,[\text{cm}] < 78$ (active $>30\text{cm}$) - **Spatial resolution** $< 200 \,\mu\text{m}$ - Charge collection via GEMs \rightarrow ALICE SAMPA - **Gateless and continuous readout** (IBF-avoiding GEMs) - Careful study of space-charge distortion effects

• MAPS-based Vertex Tracker (MVTX) - 3 layers of Monolithic Active Pixel Sensors (ALICE ALPIDE) - **Integration time**: few μs - **XZ spatial resolution** [μm]: <6

• **STREAMING READOUT MODE**: Enhance low p_T HF physics
sPHENIX: a short history and plan

- **2010**: sPHENIX proposed as upgrade / replacement of PHENIX
- **2012**: Initial proposal
- **2014**: Full proposal
- **2015**: BaBar magnet arrives from SLAC
- **2016**: Collaboration formed
- **March 2019**: Approved CERN experiment
- **Sept 2019**: PD2/3 (review complete)
- **Oct 2020**: Beam-use proposal
- **Aug 2020**: Transition from MIE detector pre-production to production
- **Dec 2020**: Construction of detectors, infrastructure, software
- **Dec 2027**: Towards a potential relationship with the EIC
- **Dec 2025**: Data Campaign 2?
- **Dec 2024**: Run 2024 pp ref. & cold QCD
- **Dec 2023**: Run 2023 Commis. & AuAu candles
- **Dec 2022**: Installation
- **Dec 2021**: End of construction
- **CD-1/3a** (begin final design, place long lead-time procurements)
- **2016**: Test beam HCal, EMCal
- **2016**: Final PHENIX run
- **2016**: CD-0 (mission need)
- **2018**: Test beam EMCal
- **2018**: CD-1/3a
- **2021**: Installation
- **< 2 yrs!**

DATA TAKING BEGINS IN
sPHENIX Run Plan

- sPHENIX run plan already part of the RHIC PAC yearly review process
 - Initial Beam Use Proposal August 2021: sPH-TRG-2020-001

- Baseline 23-25 Running before projected EIC-build shutdown of RHIC
 - If opportunity arises, obvious benefits from running longer, we planning for till at least ‘27 to be ready just in case
 - Post 2025 possibilities O+O and Ar+Ar

- Latest guidance (Spring ’21) from BNL only small modifications likely due to EIC developments
sPHENIX Jets and Photons for QGP

• For Au+Au Studies Statistics reach to 70 GeV in Jet Energy, 40 GeV in Photon Energy

• Showing some example jet observables on the following slides
 • For more information please see Yeongju Go Parallel talk tomorrow
High stats needed for LRP Goal

- Maximum p_T reach needed for goal 1 (Jets/Eloss)
Gamma-Jet Imbalance from Jet E_{loss}

- Gamma-Jet is self calibrated golden probe of E_{loss}
 - Key in-situ jet calibration tool!
- Keeps probe color charge (q) flavor constant btw LHC/RHIC by looking at γ-Jet!
 - quark single vs gluon double color charge
- $x_{J\gamma} (= \frac{p_T^{\text{jet}}}{p_T^{\gamma}})$ distributions: “direct” measure of E_{loss} at LO jet-to-photon p_T balance

\[x_{J\gamma} = \frac{p_T^{\text{jet}}}{p_T^{\gamma}} \]

\[\frac{1}{N} \frac{dN}{dx_{J\gamma}} \]

\[\text{CMS} \quad \text{Cent. 0 - 10\%} \quad \text{anti-}k_T \text{ jet } R = 0.3 \quad p_T^{\text{jet}} > 30 \text{ GeV/c} \]

4/14/2021
J. Frantz - sPHENIX@RHIC
Dijet Imbalance from Jet E_{loss}

- Can also do similar measurements with di-jets with even greater statistical precision/higher E_{jet} -- good Day 1 measurement!
 - though mix of q and g needs disentangled & energies need unfolding

- Di-jet asymmetries, reco-level from our final 2018 MIE Proposal –not updated for BUP, but won’t be stats-limited

\[A_j = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}} = \frac{1 - x_j}{1 + x_j} \]

\[x_j = \frac{1 - A_j}{1 + A_j} = \frac{p_{T2}}{p_{T1}} \]

Eventually fully unfolded x_j distribution (for dominant A_j
p+p-like response)
Tomography of the QGP with Jets

- Jet anisotropy v_n at very high p_T: tomography of the overlap geometry
 - Can be especially important as system size pushed to smallest overlaps/more peripheral collisions
 - Event plane angle resolution/wider forward acceptance very helpful: fast upgrade proposal being developed

- Statistics from post 2025 running helps here especially
HF E\textsubscript{loss} : b-Jets

- Heavy Flavor important complement to light parton jet observables
 - Slower HF quarks less radiative E\textsubscript{loss}
- sPHENIX b-Jet tagging capabilities determined: strong measurements of both R\textsubscript{AA} and v\textsubscript{2} (also for HF mesons!) comprehensively
- See talk in this session by Hugo Pereira da Costa!
sPHENIX Tracking/Onia/Upsilon program

- Thermometer of the QGP:
 HF Quarkonia melting
- First time at RHIC
 Clear separation of \(\Upsilon \) states: excellent precise mass resolution in central AuAu
- Precision 1S vs 2S
- Past \(\sim \)yr: implementation of latest ACTS tracking
 - Orders of magnitude improvements in processing time over past \(\sim \)year (amongst many other achievements!)
sPHENIX “Cold” QCD: Spin Physics

• Photon and HF TSSA sensitive to Gluon Sivers TMD
 • D⁰ TSSA also nicely improved from streaming readout in p+p

• Other Sivers, Collins, TMD Effects from jets, hadron tagging/hadron fragmentation

• Intrinsic k_T: di-jet correlation
sPHENIX Cold QCD \(p^+ (!) + A \) Physics

- TSSA also possible in \(p^+ + A \)!!! **Spin Effects in Nuclei!!!** (\(p^+ p h^+ \) TSSA in plot below)
 - Rich physics \(p^+ A \) (see below) e.g. Color Glass Condensate connection to Odderon - though \(\sim \) no forward detection in sPHENIX (parasitic EIC R&D?)
 - High stats Measurements of nuclear modification factor \(R_{pA} \): direct \(\gamma \), inclusive jets, charged hadrons

- Disentangling nucleon / nucleus intrinsic \(k_T \)
- Many others: Hadronization studies and nuclear modification of hadronization: multidimensional \((z, j_T, r) \) fragmentation measurements & fragmentation \(j_T \): dijet and photon-jet measurements Heavy quarkonium production mechanism: \(\Upsilon \) and \(J/\psi \) polarization measurements

![Graphs showing measurements and projections for sPHENIX](image-url)
Construction

- Construction over ~half complete! 60.3% for majority MIE portion
Computing and Software

- Much other technically challenging and fun work ramping up in preparation for first data in ~1.5 years
 - A great time to join sPHENIX!

3D All-Calo Clustering/Jet Particle Flow

ACTS Tracking/TPC Distortion Corrections

LED Monitoring System
- LED and Pedestal Scan (Cosmics?)
- LED and Pedestal Scan (Cosmics?)

Data-Driven Methods
- EMC: $E < 1.2 \, \pi^0$ Tower by Tower
- EMC: $E < 1.2 \, \pi^0$ Tower by Tower

Calo Calibration Strategy/Infrastructure
- EMC: $\pi^0, \eta \rightarrow 2 \gamma$ & e^+/e^- E/p
- HCal: MC Based Jet Calibrations
Consideration of potential reuse of parts of the sPHENIX detector and its infrastructure for possible EIC detector has been rapidly developing

As recently as Sept’20, RHIC PAC encourages the sPHENIX Collaboration to “continue the exploration of the connection to the future EIC.”

Consortium Fall’20 incl. non-sPHENIX members from the Jlab/ep physics community

Editorial Board: Or Hen (MIT), Tanja Horn (CUA), John Lajoie (ISU)

The EIC Collider dEtector (ECCE) consortium comprises 36 institutions assembled around the idea of building on the foundation of existing infrastructure available at RHIC IP8 and experimental equipment available there and elsewhere at JLab and RHIC.

Nov ‘20: Expression of Interest from the EIC Project → Planned submission of detector proposal Dec ‘21

https://www.ecce-eic.org/

Collaboration is meeting regularly now, WG/Conveners leading effort, 1st Software meeting recently
Conclusions

• sPHENIX is new collaboration and detector in the RHIC IR 1008 based around a 1.5 T magnet, compact and uniform design, good acceptance for hardest parton scatterings, successfully employing several novel design features

• sPHENIX is poised to make strong advances on the study of the QGP and other high energy nuclear physics in the last years of RHIC
 • Robust to EIC developments for three year run plan 2023-2025
 • Making full preparations for opportunistic running past 2025 if possible within EIC schedule

• sPHENIX construction and collaboration Development on schedule!!!
 • Pandemic delays have been mitigated: due to extraordinary effort of many collaborators!!!

• sPHENIX Magnet, Detectors, Expertise, Technical Breadth, and Infrastructure offer strong and cost-effective foundation for a 2nd EIC detector:
 • ECCE@ EIC Consortium/Collaboration https://www.ecce-eic.org/