Transverse Single-Spin Asymmetry for Electromagnetic (EM) Jets at Forward Rapidities at STAR in p^{\uparrow} + p Collisions at \sqrt{s} = 200 GeV

Latiful Kabir University of California at Riverside (For the STAR Collaboration)

> April 15, 2021 9th GHP Workshop

Office of Science

Outline

- **1** Transverse Single-Spin Asymmetry (A_N)
- RHIC and The STAR Experiment
- FMS and EEMC Detectors
- Jet Reconstruction
- \bullet A_N Extraction Status
- Outlook

Transverse Single-Spin Asymmetry (A_N)

- Unexpected large transverse single-spin asymmetries (A_N) are observed in proton-proton collisions
- pQCD predicts $A_N \sim \frac{m_q}{p_T} \cdot \alpha_S \sim 0.001$

$$A_N = rac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R}$$

Kane, Pumplin and Repko PRL 41 1689 (1978)

R. D. Klem *et al.*, PRL **36**, 929 (1976) D.L. Adams *et al.*, PLB **264**, 462 - 466(1991) I. Arsene *et al.*, PRL **101**, 042001 (2008) D.L. Adams *et al.*, PLB **261**, 201(1991) B. I. Abelev *et al.*, PRL **101**, 222001(2008) A. Adare *et al.*, PRD **90**, 012006 (2014) E.C. Aschenauer *et al.*, arXiv:1602.03922

3/17

Possible Mechanisms

Sivers Mechanism:

Correlation between proton spin and parton k_T

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_N for jets or direct photons, $W^{+/-}$. Z^0 . Drell-Yan

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

J.W. Qiu and G. Sterman, Phys Rev Lett 67 2264 (1991)

Collins Mechanism:

Transversity (quark polarization) ⊗ jet fragmentation asymmetry S_

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_N

Relativistic Heavy Ion Collider (RHIC)

- World's only polarized proton-proton collider
- Transverse and longitudinal polarization
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Fill-to-fill variations in spin pattern
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Allows to probe hard scattering processes with control of systematic effects

The STAR Experiment at RHIC

Calorimetry System:

- Barrel Electromagnetic Calorimeter (**BEMC**): $-1 < \eta < 1$
- Endcap Electromagnetic Calorimeter (**EEMC**): 1.1 $< \eta <$ 2
- Forward Meson Spectrometer (**FMS**): $2.6 < \eta < 4.1$
- Full azimuthal coverage

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb ⁻¹)	Polarization Orientation	$B/Y \langle P \rangle$
2009	200	25	Longitudinal	55
2009	500	10	Longitudinal	39
2011	500	12	Longitudinal	48
2011	500	25	Transverse	48
2012	200	22	Transverse	61/56
2012	510	82	Longitudinal	50/53
2013	510	300	Longitudinal	51/52
2015	200	52	Transverse	53/57
2015	200	52	Longitudinal	53/57
2017	510	320	Transverse	55

Polarized pp dataset since 2009

Forward Meson Spectrometer (FMS)

 FMS is a lead-glass electromagnetic calorimeter

- Array of ~1200 Pb-glass cells coupled to PMTs
- Forward pseudorapidity coverage: 2.6 < n < 4.1
- \bullet $\gamma, e^-, e^+ \rightarrow \text{EM shower}$
- Observables: γ , π^0 , EM-jet

Endcap Electromagnetic Calorimeter (EEMC)

- Coverage: $1.1 < \eta < 2.0, 0 < \phi < 2\pi$
- 12 sectors (matched to TPC sectors) \times 5 subsectors x 12 η -bins = 720 towers.
- 1 tower = 24 layers, Layer 1 = pre-shower 1, Layer 2 = pre-shower 2, Layer 24 = post-shower
- SMD U and V planes at 5X₀
- 288 SMD strips/plane/sector

EM-Jet A_N with FMS and EEMC at STAR

Motivation:

- Explore potential sources of large A_N
- Isolate subprocess contribution (EM-jet A_N) to the large A_N
- Characterize EM-jet A_N as a function of EM-jet p_T , energy and photon multiplicity

Advantages of EM-jet:

- Allows to investigate EM component of a full jet
- Enables us to classify EM-jet in terms of its constituent photon multiplicity

Dataset:

- RHIC Run 15 data
- $p^{\uparrow}p$ collisions at \sqrt{s} = 200 GeV
- Transversely polarized protons with <P> = 57%
- $\mathcal{L} = 52 \text{ pb}^{-1}$

$$p^\uparrow + p \to EM\text{-jet} + X$$

 $\textbf{EM-jet} \rightarrow \textbf{Jet reconstructed out of photons only}$

Jet Reconstruction

- Vertex z priority: TPC, VPD, BBC
- Reconstructed FMS photons / EEMC towers as input for FastJet
- Anti- k_T algorithm with R = 0.7
- $E_{\gamma} > 1.0 \text{ GeV (For FMS EM-Jet)}$
- Jet $p_T > 2.0 \text{ GeV/c}$
- $-80 \text{ cm} < V_z < 80 \text{ cm}$

Monte Carlo

- PYTHIA 6.428 event generator
- Tune: Perugia 2012 with CTEQ6 PDFs
- GEANT based STAR detector simulation

EM-Jets in FMS and EEMC

- EM-jets from forward (FMS) and intermediate (EEMC) rapidities provide different EM-jet E and p_T ranges to be explored
- Plots show EM-jet E, p_T and photon multiplicity from data

EM-Jet A_N Extraction

$$N^{\uparrow} = I_0^{\uparrow} \epsilon (1 + PA_N \cos \phi)$$

 $N^{\downarrow} = I_0^{\downarrow} \epsilon (1 - PA_N \cos \phi)$

$$A(\phi) = rac{ extstyle e$$

$$A(\phi) \approx PA_N \cos \phi + \frac{I_0^{\uparrow} - I_0^{\downarrow}}{I_0^{\uparrow} + I_0^{\downarrow}}$$

$$A(\phi) = PA_N\cos(\phi) + p_1$$

$$m{A}(\phi) + m{A}(\phi + \pi) pprox 2rac{f_0^{\uparrow} - I_0^{\downarrow}}{f_0^{\uparrow} + I_0^{\downarrow}}$$

Allows extraction of both physics asymmetry and beam asymmetry

EM-Jet A_N Extraction

Cross-ratio formula to calculate A_N

$$\epsilon pprox rac{PA_N \cos(\phi)}{\sqrt{N_\phi^\uparrow N_{\phi+\pi}^\downarrow} - \sqrt{N_{\phi+\pi}^\uparrow N_\phi^\downarrow}} \ \epsilon pprox rac{\sqrt{N_\phi^\uparrow N_{\phi+\pi}^\downarrow} - \sqrt{N_{\phi+\pi}^\uparrow N_\phi^\downarrow}}{\sqrt{N_\phi^\uparrow N_{\phi+\pi}^\downarrow} + \sqrt{N_{\phi+\pi}^\uparrow N_\phi^\downarrow}} \$$

Advantages: Cancels systematics, such as luminosity and detector effects

Corrections: Unfolding for Event Misidentification

- Solve a set of five linear equations with five variables for each energy and p_T bin
- Decompose A_N as a linear composition of A_N^i corresponding to n_i photons
- Use SVD for the unfolding procedure (e.g. TSVDUnfolding class)

Corrections: Underlying Event and p_T Corrections

Phys Rev D 91 112012 (2015), ALICE Collaboration

- EM-jet p_T values are corrected for contaminations from underlying events (UE) using off-axis cone method
- EM-jet observables are corrected to the particle level
- The asymmetry is corrected for the dilution from the background

EM-Jet A_N Projection

Leading Sources of Systematic Uncertainties

- A_N uncertainties:
 - Event misidentification
 - Background contamination
 - Beam polarization
- Energy or p_T uncertainties:
 - Calibration
 - Energy or p_T corrections
 - Effects of radiation damage

Current Status and Outlook

- ullet We are studying A_N in the subprocess: $p^{\uparrow} + p \rightarrow EM$ -jet + X
- Understanding the dependences of A_N on photon multiplicity inside EM-jet, jet p_T and jet E can help further characterize large A_N in the forward rapidities
- Current efforts include: improving the EM-jet simulation and better understanding of the sources of systematic uncertainties
- Expect physics results soon!