Transverse Single-Spin Asymmetry for Electromagnetic (EM) Jets at Forward

 Rapidities at STAR in $\mathbf{p}^{\uparrow}+\mathbf{p}$ Collisions at $\sqrt{s}=200 \mathrm{GeV}$Latiful Kabir
University of California at Riverside
(For the STAR Collaboration)

April 15, 2021
9th GHP Workshop

Supported in part by u.S. DEPARTMENT OF ENERGY

Office of
Science

Outline

(1) Transverse Single-Spin Asymmetry $\left(A_{N}\right)$
(2) RHIC and The STAR Experiment
(3) FMS and EEMC Detectors
(9) Jet Reconstruction
(6) A_{N} Extraction Status
(0 Outlook

Transverse Single-Spin Asymmetry $\left(A_{N}\right)$

- Unexpected large transverse single-spin asymmetries $\left(A_{N}\right)$ are observed in proton-proton collisions
- pQCD predicts $A_{N} \sim \frac{m_{q}}{p_{T}} \cdot \alpha_{S} \sim 0.001$

$$
A_{N} \text { in } p\left(S_{T}\right)+p \rightarrow h+X
$$

$$
A_{N}=\frac{d \sigma_{L}-d \sigma_{R}}{d \sigma_{L}+d \sigma_{R}}
$$

Kane, Pumplin and Repko
PRL 411689 (1978)

R. D. Klem et al., PRL 36, 929 (1976)
D.L. Adams et al., PLB 264, 462-466(1991)
I. Arsene et al., PRL 101, 042001 (2008)
D.L. Adams et al., PLB 261, 201(1991)
B. I. Abelev et al., PRL 101, 222001(2008) A. Adare et al., PRD 90, 012006 (2014)
E.C. Aschenauer et al., arXiv:1602.03922

Possible Mechanisms

Sivers Mechanism:

Correlation between proton spin and parton k_{T}

D. Sivers, Phys Rev D 41 (1990) 83; 43 (1991) 261

Signatures: A_{N} for jets or direct photons, $W^{+/-}, Z^{0}$, Drell-Yan

Collins Mechanism:

Transversity (quark polarization) \otimes jet fragmentation asymmetry

J. Collins, Nucl Phys B 396 (1993) 161

Signatures: Collins effect, Interference fragmentation function (IFF), pion A_{N}

Twist-3:

Quark-gluon / gluon-gluon correlations and fragmentation functions. A source for Sivers function.

Relativistic Heavy Ion Collider (RHIC)

- World's only polarized proton-proton collider
- Transverse and longitudinal polarization
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Fill-to-fill variations in spin pattern
- Polarized protons up to $\sqrt{s}=510 \mathrm{GeV}$
- Allows to probe hard scattering processes with control of systematic effects

The STAR Experiment at RHIC

- Calorimetry System:

- Barrel Electromagnetic Calorimeter (BEMC): $-1<\eta<1$
- Endcap Electromagnetic Calorimeter (EEMC): $1.1<\eta<2$
- Forward Meson Spectrometer (FMS): $2.6<\eta<4.1$
- Full azimuthal coverage

Year	$\sqrt{s}(\mathrm{GeV})$	Recorded Luminosity $\left(\mathrm{pb}^{-1}\right)$	Polarization Orientation	$\mathrm{B} / \mathrm{Y}\langle P\rangle$
2009	200	25	Longitudinal	55
2009	500	10	Longitudinal	39
2011	500	12	Longitudinal	48
2011	500	25	Transverse	48
2012	200	22	Transverse	$61 / 56$
2012	510	82	Longitudinal	$50 / 53$
2013	510	300	Longitudinal	$51 / 52$
2015	200	52	Transverse	$53 / 57$
2015	200	52	Longitudinal	$53 / 57$
2017	510	320	Transverse	55

- Polarized pp dataset since 2009

Forward Meson Spectrometer (FMS)

- FMS is a lead-glass electromagnetic calorimeter
- Array of $\sim 1200 \mathrm{~Pb}$-glass cells coupled to PMTs
- Forward pseudorapidity coverage: $2.6<\eta<4.1$
- $\gamma, e^{-}, e^{+} \rightarrow \mathrm{EM}$ shower

- Observables: γ, π^{0}, EM-jet

Endcap Electromagnetic Calorimeter (EEMC)

- Coverage: $1.1<\eta<2.0,0<\phi<2 \pi$
- 12 sectors (matched to TPC sectors) $\times 5$ subsectors x 12η-bins $=720$ towers.
- 1 tower = 24 layers, Layer $1=$ pre-shower 1 , Layer $2=$ pre-shower 2, Layer 24 = post-shower
- SMD U and V planes at $5 X_{0}$

- 288 SMD strips/plane/sector

EM-Jet A_{N} with FMS and EEMC at STAR

- Motivation:

- Explore potential sources of large A_{N}
- Isolate subprocess contribution (EM-jet A_{N}) to the large A_{N}

$$
\mathrm{p}^{\uparrow}+\mathrm{p} \rightarrow \text { EM-jet }+\mathrm{X}
$$

- Characterize EM-jet A_{N} as a function of EM-jet p_{T}, energy and photon multiplicity
- Advantages of EM-jet:
- Allows to investigate EM component of a full jet
- Enables us to classify EM-jet in terms of its constituent photon multiplicity
- Dataset:
- RHIC Run 15 data
- $\mathrm{p}^{\uparrow} \mathrm{p}$ collisions at $\sqrt{s}=200 \mathrm{GeV}$
- Transversely polarized protons with <P> = 57\%
- $\mathcal{L}=52 \mathrm{pb}^{-1}$

Jet Reconstruction

- Vertex z priority: TPC, VPD, BBC
- Reconstructed FMS photons / EEMC towers as input for FastJet
- Anti- k_{T} algorithm with $\mathrm{R}=0.7$
- $E_{\gamma}>1.0 \mathrm{GeV}$ (For FMS EM-Jet)
- Jet $p_{T}>2.0 \mathrm{GeV} / \mathrm{c}$
- $-80 \mathrm{~cm}<V_{z}<80 \mathrm{~cm}$

Monte Carlo

- PYTHIA 6.428 event generator
- Tune: Perugia 2012 with CTEQ6 PDFs
- GEANT based STAR detector simulation

Jet Levels
MC Jets

EM-Jets in FMS and EEMC

- EM-jets from forward (FMS) and intermediate (EEMC) rapidities provide different EM-jet E and p_{T} ranges to be explored
- Plots show EM-jet E, p_{T} and photon multiplicity from data

EM-Jet A_{N} Extraction

$$
\begin{aligned}
& N^{\uparrow}=I_{0}^{\uparrow} \epsilon\left(1+P A_{N} \cos \phi\right) \\
& N^{\downarrow}=I_{0}^{\downarrow} \epsilon\left(1-P A_{N} \cos \phi\right)
\end{aligned}
$$

$$
A(\phi)=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}
$$

$$
A(\phi) \approx P A_{N} \cos \phi+\frac{I_{0}^{\uparrow}-l_{0}^{\downarrow}}{l_{0}^{\uparrow}+I_{0}^{\downarrow}}
$$

$$
A(\phi)=P A_{N} \cos (\phi)+p_{1}
$$

$A(\phi)+A(\phi+\pi) \approx 2 \frac{I_{0}^{\uparrow}-I_{0}^{\downarrow}}{I_{0}^{\uparrow}+I_{0}^{\downarrow}}$

- Allows extraction of both physics asymmetry and beam asymmetry
- Cross-ratio formula to calculate A_{N}

$$
\epsilon \approx \frac{\epsilon=P A_{N} \cos (\phi)}{\sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}}-\sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}} \sqrt{N_{\phi}^{\uparrow} N_{\phi+\pi}^{\downarrow}}+\sqrt{N_{\phi+\pi}^{\uparrow} N_{\phi}^{\downarrow}}
$$

- Advantages: Cancels systematics, such as luminosity and detector effects

Corrections: Unfolding for Event Misidentification

- The leading contributions come from A_{N} for EM-jets with photon multiplicity $\mathrm{n}<6$

Solve a set of five linear equations with five variables for each energy and p_{T} bin

- Decompose A_{N} as a linear composition of A_{N}^{i} corresponding to n_{i} photons
- Use SVD for the unfolding procedure (e.g. TSVDUnfolding class)

Corrections: Underlying Event and p_{T} Corrections

Phys Rev D 91112012 (2015), ALICE Collaboration

- EM-jet p_{T} values are corrected for contaminations from underlying events (UE) using off-axis cone method
- EM-jet observables are corrected to the particle level
- The asymmetry is corrected for the dilution from the background

EM-Jet A_{N} Projection

Leading Sources of Systematic Uncertainties

- A_{N} uncertainties:
- Event misidentification
- Background contamination
- Beam polarization
- Energy or p_{T} uncertainties:
- Calibration
- Energy or p_{T} corrections
- Effects of radiation damage

Current Status and Outlook

- We are studying A_{N} in the subprocess: $\mathrm{p}^{\uparrow}+\mathrm{p} \rightarrow$ EM-jet $+X$
- Understanding the dependences of A_{N} on photon multiplicity inside EM-jet, jet p_{T} and jet E can help further characterize large A_{N} in the forward rapidities
- Current efforts include: improving the EM-jet simulation and better understanding of the sources of systematic uncertainties
- Expect physics results soon!

