# The d\* dibaryon measured via NN rescattering at CLAS

N. Compton, K. Hicks and N. Zachariou

For the CLAS Collaboration

April 14, 2021

#### The Reaction to be measured at CLAS



#### Overview

- What is <u>already known</u>:
  - The reaction pp ->  $d\pi^+$  reaction (and its inverse) cross sections are known.
  - A resonance with mass about 2150 MeV extracted from PWA (<sup>1</sup>D<sub>2</sub>, I=1).
    - See SAID group PWA in Phys. Rev. C 56, 635 (1997) and references therein.
  - This resonance is close to the combined N $\Delta$  mass (~2170 MeV).
  - Other data (WASA@COSY) see a higher-mass resonance near  $\Delta\Delta$  mass.
  - These resonances were predicted in 1964 by F.J. Dyson and N-H Xuong.
- What is <u>not known</u>:
  - The reaction np ->  $d\pi^0$  reaction is poorly known (but related by isospin).
  - What is the interference of the  ${}^{1}D_{2}$  resonance with quasifree N $\Delta$  production?

#### $\pi^+$ d Scattering

- Partial Wave Analysis.
- Prominent "resonance pole" seen in the SAID analysis.
- <sup>1</sup>D<sub>2</sub> wave in pp dibaryon system
- Pole mass and width: 2148 i 63 MeV.



#### Previous data: pp -> d $\pi^+$

Plot from: J. Bystricky et al., J. Physique 48 (1987) 1901.



#### Dibaryons

- Dibaryon: Particle with baryon number B = 2.
- Composed of six valence quarks
  - Six quarks in a bag.
- Theoretically expected and long sought resonances.

| dibaryon           | Ι | S | SU(3)           | legend         | mass    |
|--------------------|---|---|-----------------|----------------|---------|
| $\mathcal{D}_{01}$ | 0 | 1 | $\overline{10}$ | deuteron       | A       |
| ${\cal D}_{10}$    | 1 | 0 | <b>27</b>       | nn             | A       |
| ${\cal D}_{12}$    | 1 | 2 | <b>27</b>       | $N \Delta$     | A + 6B  |
| $\mathcal{D}_{21}$ | 2 | 1 | <b>35</b>       | $N \varDelta$  | A + 6B  |
| ${\cal D}_{03}$    | 0 | 3 | $\overline{10}$ | $\Delta\Delta$ | A + 10B |
| ${\cal D}_{30}$    | 3 | 0 | <b>28</b>       | $\Delta\Delta$ | A + 10B |

Freeman J. Dyson and Nguyen-Huu Xuong Phys. Rev. Lett. 13, 815 – Published 28 December 1964



- Dyson-Xuong mass formula:
  - M<sub>N∆</sub> ≈ 2160 MeV
  - M<sub>∆∆</sub> ≈ 2350 MeV
- A. Gal, H Garcilazo, "3-body model calculations of N Δ and ΔΔ dibaryon resonances" Nucl. Phys. A 928 (2014) 73-88
- H. Clement, "On the History of Dibaryons and their Final Observation", Progress in Particle and Nuclear Physics 93 (2017) 195-242

# Why remeasure this at CLAS?

- To demonstrate a <u>new technique</u>: secondary scattering
  - First vertex: photoproduction of hadrons (well-known cross sections)
    - Using liquid hydrogen (LH2) or liquid deuterium (LD2) targets
  - Second vertex: hadron-nucleon scattering
  - We can measure various <u>hadron-proton reactions</u> at CLAS!
    - For example:  $\Lambda$ -p elastic scattering, which is poorly known.
- First, we must show we can reproduce a known cross section
  - If this works, we can apply it to other reactions.
    - Another example:  $\pi p \rightarrow \pi \pi p$  which is also poorly known.

## What do we measure?

- Incident beam/target: GeV photons on 40-cm LH2 target
- Detected particles: <u>coincidence</u> of  $\pi^+$  and deuteron.
  - At first, this sounds ridiculous:  $\gamma p \rightarrow d \pi^+$  violates: baryon #, charge conserv.
- Two-step process:
  - Step 1: produce a neutron:  $\gamma p \rightarrow \pi^0 p$
  - Step 2: proton re-scatters: pp --> d  $\pi^+$
- Do this with missing masses (in reverse order):
  - Step 2: proton 4-vector from MM(Xp, $d\pi^+$ ) for X=proton mass.
  - Step 1: pion 4-vector from MM(γp,pX) for X = pion mass.

# Now look for Xp->d $\pi^+$ ( X=p )



Clear peak at the proton mass. Lots of background, but most of it can be removed with kinematical cuts.

## Cut on proton: look for $\pi^0$ in Missing Mass



Pion mass comes out high (energy-loss).

Most of the events in range of  $E_{\gamma}$  = 0.9-1.1 GeV

## Cross section calculation

- Step 1: calculate the proton "beam" flux (or luminosity)
  - This is not trivial but can be done using simulations.
- Step 2: get the detector acceptance
  - A two-vertex generator was coded (N. Zachariou) specially for this.
  - The GSIM code, based on CERN's geant, is well documented for CLAS.
  - The hardware trigger and run-time conditions are also simulated.
- Step 3: get the counts for a specific beam-momentum bin
  - For now, restrict photon beam energy to  $0.9 < E_{\gamma} < 1.1$  GeV.
  - Take bins in proton-momentum, *e.g.*,  $1.00 < p_{prot} < 1.05$  GeV/c.
- Step 4: calculate!

## Preliminary results (red diamonds):



Note: statistical errors are about the size of the points.

Systematic uncertainties are of the order of 10%, mainly due to the global normalization uncertainty.

Points at higher beam energy can be extracted, given time.

# Bonus: get np -> $d\pi^0$ for free!



## What do we measure?

- The g11 experiment at CLAS has GeV photons on 40-cm LH2 target
- Detected particles: coincidence of  $\pi^+$  and d.
- Two-step process:
  - Step 1: produce a neutron:  $\gamma p \rightarrow \pi^+ n$
  - Step 2: neutron rescatters: np --> d  $\pi^0$
- Do this using missing masses:
  - Step 1: neutron 4-vector from MM( $\gamma p, \pi^+ X$ ) for X = neutron mass.
  - Step 2:  $\pi^0$  4-vector from MM(np,dX) for X=pion mass.

## Step 1: Missing mass of $\gamma p \rightarrow \pi^+ n$ .



MC using N.Z.'s event generator



#### Step 2: Missing mass of np -> d $\pi^0$ .



# Table of cross sections

| N-momentum  | Yield (uncert.) | Acceptance | n-Luminosity (e27) | Cross section (mb) |
|-------------|-----------------|------------|--------------------|--------------------|
| 0.90 – 0.95 | 35 (16%)        | 0.292      | 338.               | 0.93               |
| 0.95 - 1.00 | 65 (12%)        | 0.278      | 405.               | 1.51               |
| 1.00 - 1.05 | 94 (10%)        | 0.294      | 495.               | 1.69               |
| 1.05 - 1.10 | 120 (9%)        | 0.285      | 595.               | 1.85               |
| 1.10 - 1.15 | 120 (9%)        | 0.250      | 703.               | 1.78               |
| 1.15 – 1.20 | 106 (10%)       | 0.166      | 896.               | 1.86               |
| 1.20 – 1.25 | 72 (12%)        | 0.115      | 1009               | 1.62               |
| 1.25 – 1.30 | 41 (15%)        | 0.0876     | 732                | 1.67               |
| 1.30 – 1.35 | 10 (30%)        | 0.0443     | 502                | 1.17               |

 $\sigma$  = Yield/(Accep.)(Lumin.)(effic.)

where effic. = (trigger factor)(trigger efficiency) = (0.467)(0.82)Refs.: trigger factor [M. Williams], trigger effic. [INFN] **Notes**: 1) Luminosity from  $\gamma p \rightarrow \pi^+ n$  has ~10% systematic uncert.

# Summary

- These results are still <u>preliminary</u>!
  - Systematic uncertainties are still being evaluated.
  - This represents only 15% of the full data set.
- This new technique gives cross sections that agree with world data.
  - This give confidence that we can measure other hadron-beam reactions.
  - One advantage here: both pp->d $\pi^+$  and np->d $\pi^0$  in the same data set.
- The expected ratio (isospin symmetry) of (pp->d $\pi^+$ )/(np->d $\pi^0$ ) = 2.
  - Assumes no isospin-breaking in the interference of resonance & background.
  - Note: only a single absolute cross section for np->d $\pi^0$  in the past.
    - Ref.: V.B. Fliagin, et al., JEPT 35, 592 (1959). All other papers assume isospin symmetry.
  - Our preliminary results give a lower ratio, especially near threshold.