The d* dibaryon measured via NN rescattering at CLAS

N. Compton, K. Hicks and N. Zachariou

For the CLAS Collaboration

April 14, 2021

The Reaction to be measured at CLAS

40 cm

Overview

- What is already known:
- The reaction $\mathrm{pp}->\mathrm{d} \pi^{+}$reaction (and its inverse) cross sections are known.
- A resonance with mass about 2150 MeV extracted from PWA (${ }^{1} \mathrm{D}_{2}, \mathrm{I}=1$).
- See SAID group PWA in Phys. Rev. C 56, 635 (1997) and references therein.
- This resonance is close to the combined $\mathrm{N} \Delta$ mass ($\sim 2170 \mathrm{MeV}$).
- Other data (WASA@COSY) see a higher-mass resonance near $\Delta \Delta$ mass.
- These resonances were predicted in 1964 by F.J. Dyson and N-H Xuong.
- What is not known:
- The reaction $n p->d \pi^{0}$ reaction is poorly known (but related by isospin).
- What is the interference of the ${ }^{1} D_{2}$ resonance with quasifree $N \Delta$ production?

$\pi^{+} d$ Scattering

- Partial Wave Analysis.
- Prominent "resonance pole" seen in the SAID analysis.
- ${ }^{1} D_{2}$ wave in pp dibaryon system
- Pole mass and width: 2148 - i 63 MeV .

Previous data: pp -> d π^{+}

Plot from: J. Bystricky et al., J. Physique 48 (1987) 1901.

Data from a variety of facilities, shown by the legend.

Peak at $\mathrm{T}_{\text {kin }}=0.55 \mathrm{GeV}$
Convert to $\mathrm{W}=2.137 \mathrm{GeV}$
Full width $(\mathrm{W})=100 \mathrm{MeV}$

Dibaryons

- Dibaryon: Particle with baryon number $\mathrm{B}=2$.
- Composed of six valence quarks
- Six quarks in a bag.
- Theoretically expected and long sought resonances.

dibaryon	I	S	$\mathrm{SU}(3)$	legend	mass
\mathcal{D}_{01}	0	1	$\overline{\mathbf{1 0}}$	deuteron	A
\mathcal{D}_{10}	1	0	$\mathbf{2 7}$	$n n$	A
\mathcal{D}_{12}	1	2	$\mathbf{2 7}$	$N \Delta$	$A+6 B$
\mathcal{D}_{21}	2	1	$\mathbf{3 5}$	$N \Delta$	$A+6 B$
\mathcal{D}_{03}	0	3	$\overline{\mathbf{1 0}}$	$\Delta \Delta$	$A+10 B$
\mathcal{D}_{30}	3	0	$\mathbf{2 8}$	$\Delta \Delta$	$A+10 B$

Freeman J. Dyson and Nguyen-Huu Xuong
Phys. Rev. Lett. 13, 815 - Published 28 December 1964

- Dyson-Xuong mass formula:
- $\mathrm{M}_{N \Delta} \approx 2160 \mathrm{MeV}$
- $\mathrm{M}_{\Delta \Delta} \approx 2350 \mathrm{MeV}$
- A. Gal, H Garcilazo, "3-body model calculations of $N \Delta$ and $\Delta \Delta$ dibaryon resonances" Nucl. Phys. A 928 (2014) 73-88
- H. Clement, "On the History of Dibaryons and their Final Observation", Progress in Particle and Nuclear Physics 93 (2017) 195-242

Why remeasure this at CLAS?

- To demonstrate a new technique: secondary scattering
- First vertex: photoproduction of hadrons (well-known cross sections)
- Using liquid hydrogen (LH2) or liquid deuterium (LD2) targets
- Second vertex: hadron-nucleon scattering
- We can measure various hadron-proton reactions at CLAS!
- For example: Λ-p elastic scattering, which is poorly known.
- First, we must show we can reproduce a known cross section
- If this works, we can apply it to other reactions.
- Another example: $\pi p->\pi \pi p$ which is also poorly known.

What do we measure?

- Incident beam/target: GeV photons on $40-\mathrm{cm}$ LH2 target
- Detected particles: coincidence of π^{+}and deuteron.
- At first, this sounds ridiculous: $\gamma \mathrm{p}$--> $\mathrm{d} \pi^{+}$violates: baryon \#, charge conserv.
- Two-step process:
- Step 1: produce a neutron: $\gamma \mathrm{p}$--> $\pi^{0} p$
- Step 2: proton re-scatters: pp --> d π^{+}
- Do this with missing masses (in reverse order):
- Step 2: proton 4-vector from $\mathrm{MM}\left(\mathrm{Xp}, \mathrm{d} \pi^{+}\right)$for $\mathrm{X}=$ proton mass.
- Step 1: pion 4-vector from $\mathrm{MM}(\gamma \mathrm{p}, \mathrm{pX})$ for $\mathrm{X}=$ pion mass.

Now look for Xp->d π^{+}($\mathrm{X}=\mathrm{p}$)
 MM (Xp, d $\pi+$)

Clear peak at the proton mass. Lots of background, but most of it can be removed with kinematical cuts.

Cut on proton: look for π^{0} in Missing Mass

Pion mass comes out high (energy-loss).

Most of the events in range of $E_{\gamma}=0.9-1.1 \mathrm{GeV}$

Cross section calculation

- Step 1: calculate the proton "beam" flux (or luminosity)
- This is not trivial but can be done using simulations.
- Step 2: get the detector acceptance
- A two-vertex generator was coded (N. Zachariou) specially for this.
- The GSIM code, based on CERN's geant, is well documented for CLAS.
- The hardware trigger and run-time conditions are also simulated.
- Step 3: get the counts for a specific beam-momentum bin
- For now, restrict photon beam energy to $0.9<\mathrm{E}_{\gamma}<1.1 \mathrm{GeV}$.
- Take bins in proton-momentum, e.g., $1.00<\mathrm{p}_{\text {prot }}<1.05 \mathrm{GeV} / \mathrm{c}$.
- Step 4: calculate!

Preliminary results (red diamonds):

Note: statistical errors are about the size of the points.

Systematic uncertainties are of the order of 10%, mainly due to the global normalization uncertainty.

Points at higher beam energy can be extracted, given time.

Bonus: get np -> $\mathrm{d} \pi^{0}$ for free!

What do we measure?

- The g11 experiment at CLAS has GeV photons on $40-\mathrm{cm}$ LH2 target
- Detected particles: coincidence of π^{+}and d.
- Two-step process:
- Step 1: produce a neutron: γp--> $\pi^{+} n$
- Step 2: neutron rescatters: np --> d π^{0}
- Do this using missing masses:
- Step 1: neutron 4-vector from $M M\left(\gamma p, \pi^{+} X\right)$ for $X=$ neutron mass.
- Step 2: $\pi^{0} 4$-vector from $\mathrm{MM}(\mathrm{np}, \mathrm{dX})$ for $\mathrm{X}=$ pion mass.

Step 1: Missing mass of $\gamma p-->\pi^{+} n$.

G11 data: lots of background!

MC using N.Z.'s event generator

Step 2: Missing mass of $\mathrm{np}->\mathrm{d} \pi^{0}$.

Missing Mass Squared (np,dX) (GeV²)

MC: ~17\% loss of events

Missing Mass Squared (np,dX) (GeV²)

Table of cross sections

N-momentum	Yield (uncert.)	Acceptance	n-Luminosity (e27)	Cross section (mb)
$0.90-0.95$	$35(16 \%)$	0.292	338.	0.93
$0.95-1.00$	$65(12 \%)$	0.278	405.	1.51
$1.00-1.05$	$94(10 \%)$	0.294	495.	1.69
$1.05-1.10$	$120(9 \%)$	0.285	595.	1.85
$1.10-1.15$	$120(9 \%)$	0.250	703.	1.78
$1.15-1.20$	$106(10 \%)$	0.166	896.	1.86
$1.20-1.25$	$72(12 \%)$	0.115	1009	1.62
$1.25-1.30$	$41(15 \%)$	0.0876	732	1.67
$1.30-1.35$	$10(30 \%)$	0.0443	502	1.17

$\sigma=$ Yield/(Accep.)(Lumin.)(effic.)
where effic. $=$ (trigger factor) (trigger efficiency) $=(0.467)(0.82)$
Refs.: trigger factor [M. Williams], trigger effic. [INFN]
Notes: 1) Luminosity from $\gamma \mathrm{p}->\pi^{+} \mathrm{n}$ has $\sim 10 \%$ systematic uncert.

Summary

- These results are still preliminary!
- Systematic uncertainties are still being evaluated.
- This represents only 15% of the full data set.
- This new technique gives cross sections that agree with world data.
- This give confidence that we can measure other hadron-beam reactions.
- One advantage here: both $\mathrm{pp}->\mathrm{d} \pi^{+}$and $\mathrm{np}->\mathrm{d} \pi^{0}$ in the same data set.
- The expected ratio (isospin symmetry) of (pp->d $\left.\pi^{+}\right) /\left(n p->d \pi^{0}\right)=2$.
- Assumes no isospin-breaking in the interference of resonance \& background.
- Note: only a single absolute cross section for np->d π^{0} in the past.
- Ref.: V.B. Fliagin, et al., JEPT 35, 592 (1959). All other papers assume isospin symmetry.
- Our preliminary results give a lower ratio, especially near threshold.

