Vector-Meson-Nucleon Scattering Length from Omega to Upsilon

Igor Strakovsky & William Briscoe

The George Washington University

J/ ψ photoproduction is sample of hard processes corresponding to relatively large scale $\mu_c \simeq (0.5 - 1)M_{J/\psi}$

J/ w is 'small size' object which can be used to study internal structure
 of proton (hadron), like in DIS case but now J/ w feels not electric charge but gluon distribution

GDH2021, Online Anywhere, April 2021

Supported by (DE-SC0016583

- Vector-Meson domestic Zoo.
- Vector-Meson Nucleon *SL*.
- Brief tour through experiments.
- Total cross section fits.
- Brief tour through *SLs*.
- Expectation from EIC
- Summary.

Vector-Meson Domestic Zoo

- Some *vector-mesons* can, compared to other mesons, be measured to very high precision.
- This stems from fact that *vector-mesons* have same quantum numbers as *photon*.

		$\left(\mathbf{I}^{\mathbf{G}}(\mathbf{J}^{\mathbf{PC}})=0^{-}(1^{})\right)$			
	Name	Quark	Г		
$ \begin{array}{c} \overline{q}q \text{ Nonet} \\ D_{s}^{*0} \\ \overline{cu} \\ \overline{cs} \\ \overline{cs} \\ \overline{cd} \\ \overline{cs} \\$	particle data group	Content	(MeV)		
	<i>ρ</i> ⁺ (770	ud	148		
	 (770) $\frac{1}{\sqrt{2}} \left(u \bar{u} - d \bar{d} \right)$	149		
	(782)	$\frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right)$	8.5		
	K* +(89	2) us	51		
	K* ⁰ (89	2) ds	47		
) ss	4.3		
	D* +(20	10) cd	0.083	Open Charm	
	D* ⁰ (20	07) cu	< 2.1		
	Ι/ ψ (1S)(3097) cc	0.093	Charmonium	
	Y (1S)(9	9460) bb	0.052	Quarkonium	

• We will focus on 4 vector-mesons from $\bar{q}q$ *Nonet* which widths are **narrow** enough to study meson photoproduction @ threshold & where data are available.

Vector-Meson – Nucleon Scattering Length Determination

IS, D. Epifanov, & L. Pentchev, Phys Rev C **101**, 042201 (2020) IS, L. Pentchev, & A.I. Titov, Phys Rev C **101**, 045201 (2020)

 Small *positive* or *negative* VN SL may indicate weakly *repulsive* or *attractive* VN interaction if there is no VN bound state below experimental *q_{min}*.

• For evaluation of *absolute* value of *VM-N SL*, we apply VMD approach that links near-threshold photoproduction *Xsections* of $\gamma p \rightarrow V p$ & elastic $V p \rightarrow V p$

$$\frac{d\sigma^{\gamma p \to V p}}{d\Omega}|_{\text{thr}} = \frac{q}{k} \frac{1}{64\pi} |T^{\gamma p \to V p}|^2 = \frac{q}{k} \cdot \frac{\pi \alpha}{g_V^2} \frac{d\sigma^{V p \to V p}}{d\Omega}|_{\text{thr}} = \frac{q}{k} \frac{\pi \alpha}{g_V^2} |\alpha_{V p}|^2$$

k is photon CM momentum $k = (s - M^2) / 2 s^{1/2}$

q is vector-meson CM momentum

 $T^{\gamma p \rightarrow V p}$ is the invariant amplitude of *vector-meson* photoproduction

 α is fine-structure constant

 g_V is VMD coupling constant, related to vector-meson EM decay width $\Gamma_{v \rightarrow e+e-}$

$$g_V^2 = \pi \alpha^2 m_V / 3 \Gamma_{V \to e^+ e^-}$$

 Finally, one can express absolute value of SL as product of pure EM VMD-motivated kinematic factor

 $R_V^2 = \alpha m_V k / 12 \pi \Gamma_{V \to e^+ e^-} \& h_{Vp}^2 = b_1$ where b_1 came from by

where b_1 came from best fit $\sigma_t = b_1 q + b_3 q^3 + b_5 q^5$

To avoid theoretical uncertainties, we did not

determine sign of SL,

separate Re & Im parts of SL,

extract spin 1/2 & 3/2 contributions.

that is determined by interplay of strong (hadronic) & EM dynamics as

GDH2021, Online Anywhere, April 2021

4/12/2021

Igor Strakovsky 4

VMD Approach

Vector-Meson Dominance model
 M. Gell-Mann & F. Zachariasen, Phys Rev 124, 953 (1961)
 J.J. Sakurai, *Currents and Mesons* (The University of Chicago Press, Chicago, 1969)
 relying on transparent current-field identities
 N.M. Kroll, T.D. Lee, & B. Zumino, Phys. Rev. 157, 1376 (1967)

• In VMD, real photon can fluctuate into virtual *vector-meson*, γ , ω , ϕ which subsequently scatters off target proton.

• VMD does not contain *free parameters* & can be used for variety of qualitative estimates of observables in *vector-meson* photoproductions @ least as first step towards their more extended theoretical studies.

\mathcal{VMD} for $\mathcal{J}/\psi \mathcal{N}$ Interaction

• There is no alternative VMD to get $J/\psi p$ SL from meson photoproduction.

Courtesy of Arkady Vainshtein & Michael Ryskin, July 2020

- To estimate theoretical uncertainty related to VMD model, one refer to estimation of cross section of J/ψ photoproduction in *peripheral model* & found strong energy dependence close to threshold because non-diagonal γp→Vp & elastic Vp→Vp must have larger transfer momenta vs elastic scattering. This result in violation of VMD by factor of 5.
 K.G. Boreskov & B.L. Ioffe, Sov J Nucl Phys 25, 331 (1977)
- Color factor for *charmonium* is 1/9 while for *open charm* is 8/9.

• Additional suppression factor for $J/\psi N$ interaction @ threshold is OZI rule. OZI suppressed processes have larger number of independent fermion loops

compared with non-suppressed processes.

Courtesy of Boris Kopeliovich & Bob Jaffe, June 2020

VMD Approach: EM Factor

• *EM* factor R_V for each vector-meson are close to each other.

was build @ SLAC & used in J/ψ measurements
 @ SPEARS & b quark physics @ Worked @ BROOKEDATEN for physics of hadrons & it is @ Market is @ Now.

• High-Flux, Tagged, Bremsstrahlung Photon Beam: Unpolarized, Linear, and Circular

- •Polarized and Unpolarized Targets
- Recoil polarimeter

Crystal Ball, TAPS, & Tracking

 $\rightarrow \omega p \xrightarrow{} \pi^{0} \gamma p \xrightarrow{} 3 \gamma p$ Measurements

IS, S. Prakhov, Ya. Azimov et al, Phys Rev C 91, 045207 (2015)

- Accelerator: 2.2 GeV/pass
- Halls A,B,C: e⁻ 1-5 passes ≤11 GeV
- Hall D: e^- 5.5 passes 12 GeV $\Rightarrow \gamma$ -beam
- Runs 2017-2018: 5.5 passes 11.7 GeV

CEBAF Large Acceptance Spectrometer 1997-2012

Bremsstrahlung Photon Tagger

Torus Magnet 6 Superconducting Coils

Target + Start Counter

Drift Chambers 35,000 cells **Electromagnetic Calorimeters** Lead/Scintillator, 1296 PMTs

Jefferson Lab CLAS Detector

Time-of-Flight Counters

4/12/2021

Gas Cherenkov Counters

GDH2021, Online Anywhere, April 2021

B.A. Mecking et al. Nucl Inst Meth

B. Dey et al, Phys Rev C 89, 055208 (2014)

cosθ of close spans from -0.80 to 0.93.
Legendre polynomial extension

 $d\sigma/d\Omega(E_{\gamma},\cos\theta) = \sum_{j=0} A_j(E_{\gamma})P_j(\cos\theta)$

is way to determine σ_t

IS, L. Pentchev, & A.I. Titov, Phys Rev C 101, 045201 (2020)

GDH2021, Online Anywhere, April 2021

25% of total statistics (**2016-2018**) up to date.

Igor Strakovsky 14

New J/ψ -p Scattering Length

All previous theoretical results (including potential approaches & LQCD calculations) gave much-much larger SL.

Total Cross Sections for Vector-Meson Photoproduction off Proton

• Therefore, such big difference in *Scattering Length* is determined mainly by *hadronic* factor h_{V_D} .

Vector-Meson – Nucleon SL

This separation (in zero approximation) is

proportional to $1/m_V$.

EM factor R_V for each vector-meson are close to each other.

• Therefore, such big difference in *SL* is determined mainly by hadronic factor $h_{V_{P}}$.

Such small value of \$\phi p\$ SL compared to typical hadron size of 1 fm, indicates that proton is more transparent for \$\phi\$-meson compared to \$\varnothindow\$-meson, &\varnothindow\$ is much less transparent than for \$J\$/\$\psi\$-meson.

$$|\alpha_{J/yp}| << |\alpha_{\phi p}| << |\alpha_{\omega p}|$$

Electron Ion Collider Receives CD-0 Approval

- EIC Panel evaluated proposals from JLAB and BNL (Aug Oct, 2019)
- CD-0 approved Dec. 19, 2019
- DOE announced selection of Brookhaven National Lab to host EIC Jan. 9, 2020

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

The Relativistic Heavy lon Collider (RHIC) at Brookhaven National Laboratory will provide crucial infrastructure for the new Electron Ion Collider.

Courtesy of Stuart Henderson, JLUO, June 2020

4/12/2021

11

in 2021

EIC Machine Parameters

Double Ring Design Based on Existing RHIC Facilities

Hadron Storage Ring: 40 - 275 GeV

- RHIC Yellow Ring and Injector Complex
- Many Bunches, 1160 @ 1A Beam Current
- Bright Beam Emittance ε_{xp}= 9 nm
- Flat Beam, Requires Strong Cooling

High Luminosity Interaction Region(s)

25 mrad Crossing Angle with Crab Cavities

- Electron Storage Ring: 2.5 18 GeV
- Many Bunches, Large Beam Current 2.5 A
- 9 MW Synchrotron Radiation
- Superconducting RF Cavities , 10MW Power

Electron Rapid Cycling Synchrotron

Spin Transparent Due to High Periodicity

Courtesy of Jim Yeck, EIC@IP6, March 2021

Expectation from

- For simulations:
 - One assumed total integrated luminosity of 100 fb⁻¹ for \bigcirc , which corresponds to 116 days @ 10³⁴ cm⁻² s⁻¹.
 - Extrapolation goes down from 100 GeV.

Expectation from

VM**-**NSL

Such small value of \$\phi p\$ SL\$ compared to typical hadron size of 1 fm, indicates that proton is more transparent for \$\phi\$-meson compared to \$\varnothinsparent\$ meson, \$\&\$ is much less transparent than for \$J\$ \$\psi\$ -meson.

$$|\alpha_{\mathsf{Y}p}| << |\alpha_{\mathsf{J}/\psi p}| << |\alpha_{\phi p}| << |\alpha_{\omega p}|$$

• $p \rightarrow V$ coupling is proportional to $\alpha_s \&$ separation of corresponding quarks.

• This *separation* (in zero approximation) is proportional to $\frac{l/m_V}{l}$.

Courtesy of Michael Ryskin, July 2020

Exclusive Reaction $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p @ J/\psi$ Threshold

A. Ali et al, Phys Rev Lett **123**, 072001 (2019)

 Electrons separated from pions by E/p – energy deposition in calorimeters over measured momentum (pions >10³ times more than electrons)

GLUE

- Obviously, facility will open new window in solving the *VM-N SL* puzzle. It will allow to make deal with `*young*' *Y*-meson as well.
- It was observed that J/ψ-N cross section measured via J/ψ re-scattering/absorption inside nucleus is anomaly small in case of low energy photoproduction. This can be explained by fact that we dealt with `young' J/ψ of too small radius. Y-photoproduction on both proton & *nucleus* will extend our J/ψ study.
- In case of J/ψ (even Y) *electroproduction*, we deal with the `young' J/ψ (Y) for larger Q² & we will have smaller formation time & correspondingly smaller radius of heavy *Charmonium & Quarkonium*.

