APS Topical Group on Hadronic Physics 14 April 2021

Study of unpolarized TMDs in SIDIS

OTON IN 3D

in collaboration with the Pavia group

Istituto Nazionale di Fisica Nucleare

European Research Council

Chiara Bissolotti Università degli Studi di Pavia and INFN

 $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$

$$(\mu_b,\zeta_F)\otimes f_{j/P}(x,\mu_b)$$

$$)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\}$$

$$f_{\mathrm{NP}}(x,b,\zeta)$$

parametrized and fitted to data

PV17 NONPERTURBATIVE FUNCTIONS

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, A. Signori arXiv:1703.10157

$$f_{1\mathrm{NP}}^{a}(x,\mathbf{k}_{\perp}^{2}) = \frac{1}{\pi} \frac{\left(1+\lambda \mathbf{k}_{\perp}^{2}\right)}{g_{1a}+\lambda g_{1a}^{2}} e^{-\frac{\mathbf{k}_{\perp}^{2}}{g_{1a}}}$$

$$D_{1NP}^{a \to h}(z, \mathbf{P}_{\perp}^{2}) = \frac{1}{\pi} \frac{1}{g_{3a \to h} + (\lambda_{F}/z^{2})g_{4a \to h}^{2}} \left(e^{-\frac{\mathbf{P}_{\perp}^{2}}{g_{3a \to h}}} + \lambda_{F} \frac{\mathbf{P}_{\perp}^{2}}{z^{2}} e^{-\frac{\mathbf{P}_{\perp}^{2}}{g_{4a \to h}}} \right)$$

x-dependence

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_{3,4}(z) = N_{3,4} \frac{(z^{\beta} + \delta) (1 - z)^{\gamma}}{(\hat{z}^{\beta} + \delta) (1 - \hat{z})^{\gamma}}$$

11 free parameters

non-perturbative Sudakov factor $g_K(b_T) = -g_2 b_T^2/2$

EIC IMPACT STUDIES

EIC PSEUDODATA

EIC pseudodata generated by Ralf Seidl

we took the average kinematic variables of each point and the relative uncertainty on the observable

 $F_{UU,T}(x, z, q_T;$

Bacchetta, Delcarro, Pisano, Radici, Signori arXiv:1703.10157

PV17 TMDs predictions using global fit of Pavia 2017

$$Q^2)$$

https://github.com/vbertone/NangaParbat

Sensitivity coefficients

trom arXiv:2007.08300

E. Aschenauer, I. Borsa, G. Lucero, A. S. Nunes, R. Sassot trom arXiv:2007.08300

$S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\delta \mathcal{O} \wedge f_i}$

Reweighing

EIC IMPACT STUDIES REWEIGHING

200 replicas are compared with pseudodata

different mathematical formulas to compute the weights

N. Sato, J. Owens, H. Prosper, PRD 89 (2014) 114020; H. Paukkunen, P. Zurita, JHEP 12 (2014) 100

 $w_k \propto \mathcal{P}(f_k|\chi_k) \propto e^{-\frac{1}{2}\chi_k^2}$

selects replicas with very low χ^2

REWEIGHING

200 replicas are compared with pseudodata

$$\chi_k^2 = \chi_{k,\mathrm{EIC}}^2 + \chi_{k,\mathrm{PV17}}^2$$

original' χ^2
with respect to PV17 data
weights
 $w_k \propto \mathcal{P}(f_k | \chi_k) \propto \chi_k^{n-1} e^{-\frac{1}{2}\chi_k^2}$

from NNPDF Collaboration arXiv:1108.1758

used to select replicas

-> reflect the impact of EIC data on extracted TMDs

EIC IMPACT ON TMDS FROM REWEIGHING

68% C.L.

we combined pseudodata of different configurations 5x41, 5x100, 10x100, 18x275

SEMI-INCLUSIVE DIS IN TERMS OF TMDs

 $\frac{d\sigma}{dx\,dy\,dz\,d\psi\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{$

 $F_{UU,T}(x, z, P_{h\perp}^2, Q^2) \rightarrow 4D$ quantities $+ \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi_h) F_{UU}^{\cos\phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos2\phi_h} \rightarrow \text{unpolarized}$ $+\lambda_e \left[\dots 1 \, \mathsf{SF} \dots \right] \rightarrow \mathsf{polarized terms}$ $+S_{||}\left[\ldots 2\,\mathsf{SFs}\ldots\right]+$ $+ S_{||} \lambda_e \left[\dots 2 \operatorname{SFs} \dots \right]$ $+S_{\perp}\left[\ldots 6\,\mathsf{SFs}\ldots
ight]$ \overline{dx} $+ S_{\perp} \lambda_e \left[\dots 3 \operatorname{SFs} \dots \right] \right\}$

$$rac{d\sigma}{cdydzd^2P_{hT}}$$
 :

 $= \frac{4\pi^2 \alpha^2}{2xQ^2} \frac{y}{(1-\varepsilon)} \left[F_{UU,T}(x, z, P_{hT}^2, Q^2) + \varepsilon F_{UU,L}(x, z, P_{hT}^2, Q^2) \right]$

slide from A.Signori

GLOBALFIT at NLLISDRELL-YANZ BOSON PROD.

NA A

cuts applied to select data points:

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7

 $P_{hT}, q_T < Min[0.2 \ Q, 0.7 \ Qz] + 0.5 \ GeV$

EXPERIMENTAL DATA FOR TMDS

