Factorized approach to radiative corrections for inelastic lepton-hadron collisions

Nobuo Sato

In collaboration with :
Tianbo Liu (Shandong U.), Wally Melnitchouk (JLab), Jianwei Qiu (JLab)

GHP21: TMDs and SIDIS

Jefferson Lab

EIC ${ }^{2}$
 \section*{SIDIS - the next frontier
 \section*{SIDIS - the next frontier of hadron structure} of hadron structure}

Jefferson Lab

$\overline{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\begin{aligned}
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& \quad+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}} \\
& \quad+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
\end{aligned}
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right.
$$

$$
+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right.
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

Name	Symbol	meaning
upol. PDF	f_{1}^{q}	U. pol. quarks in U. pol. nucleon
pol. PDF	g_{1}^{q}	L. pol. quarks in L. pol. nucleon
Transversity	h_{1}^{q}	T. pol. quarks in T. pol. nucleon
Sivers	$f_{1 T}^{\perp(1) q}$	U. pol. quarks in T. pol. nucleon
Boer-Mulders	$h_{1}^{\perp(1) q}$	T. pol. quarks in U. pol. nucleon
Boer-Mulders	$h_{1}^{\perp(1) q}$	T. pol. quarks in U. pol. nucleon
\vdots	\vdots	\vdots
FF	D_{1}^{q}	U. pol. quarks to U. pol. hadron
Collins	$H_{1}^{\perp(1) q}$	T. pol. quarks to U. pol. hadron
\vdots	\vdots	\vdots

The Breit Frame

SIDIS regions

 p_{h}^{\perp}

Current fragmentation
Collinear factorization

Current fragmentation
TMD factorization

Soft region ????

Target region Fracture functions

- Factorization theorem relies on q moving along -z
- How do we know that q is exactly along -z even-by-event?
- Role of QED radiation?

- In the presence of QED radiation, the q direction is not fixed
- The experimental Breit Frame does not need to coincide with the actual Breit-frame needed in QCD factorization

How to proceed?


```
arXiv.org > hep-ph > arXiv:2008.02895
```

High Energy Physics - Phenomenology
[Submitted on 6 Aug 2020 (v1), last revised 17 Mar 2021 (this version, v3)]

Factorized approach to radiative corrections for inelastic lepton-hadron collisions

Tianbo Liu, W. Melnitchouk, Jian-Wei Qiu, N. Sato

Lepton Distribution Function (LDF)
Lepton Fragmentation Function (LFF)

Key observation

$$
L_{\rho \sigma}\left(\xi_{B}, \zeta_{B}, Q^{2}, \hat{\boldsymbol{q}}_{T}^{2}\right)=\int \frac{d^{2} \boldsymbol{b}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{T} \cdot \boldsymbol{b}} \widetilde{W}_{\rho \sigma}\left(\xi_{B}, \zeta_{B}, Q^{2}, b\right)+Y_{\rho \sigma}\left(\xi_{B}, \zeta_{B}, Q^{2}, \hat{\boldsymbol{q}}_{T}^{2}\right),
$$

$$
\begin{aligned}
\widetilde{W}_{T T}\left(\xi_{B}, \zeta_{B}, Q^{2}, b\right)= & 2 \int_{\xi_{B}}^{1} \frac{d \xi}{\xi} \int_{\zeta_{B}}^{1} \frac{d \zeta}{S^{2}} f(\xi) D(\zeta) C_{f}(\lambda) C_{D}(\eta) \\
& \times \exp \left\{-\int_{\mu_{B}^{2}}^{\mu_{Q}^{2}} \frac{d \mu^{\prime \prime}}{\mu^{\prime 2}}\left[A\left(\alpha\left(\mu^{\prime}\right)\right) \ln \frac{\mu_{Q}^{2}}{\mu^{\prime 2}}+B\left(\alpha\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}-\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.
$$

$$
+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}
$$

$$
+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon \varepsilon_{U T, L}^{\sin \left(\phi_{h}-\phi_{s}\right)}\right)\right.
$$

$$
+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right.$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\},
$$

SIDIS with QED

QED rotational
effects

$$
\approx\left[\frac{\alpha_{\mathrm{EM}}^{2}}{\hat{x} \hat{y} \hat{Q}^{2}} \frac{\hat{y}^{2}}{2(1-\hat{\epsilon})}\left(1+\frac{\hat{\gamma}}{2 \hat{x}}\right) F_{U U}\left(\hat{x}, \hat{Q}^{2}, \hat{z}, \hat{P}_{h, \mathrm{~T}}\right)\right]
$$

Hadron pT in the true Breit frame

Collinear LDFs and LFFs

$$
f_{i / e}(\xi)=\int \frac{d z^{-}}{4 \pi} e^{i \xi \ell^{+} z^{-}}\langle e| \bar{\psi}_{i}(0) \gamma^{+} \Phi_{\left[0, z^{-}\right]} \psi_{i}\left(z^{-}\right)|e\rangle
$$

$$
D_{e / j}(\zeta)=\frac{\zeta}{2} \sum_{X} \int \frac{d z^{-}}{4 \pi} e^{i e^{\prime+z^{-}} / \zeta} \operatorname{Tr}\left[\gamma^{+}\langle 0| \bar{\psi}_{j}(0) \Phi_{[0, \infty]}|e, X\rangle\langle e, X| \psi_{j}\left(z^{-}\right) \Phi_{\left[z^{-}, \infty\right]}|0\rangle\right] .
$$

Attention: These objects are perturbatively calculable

Input scale LDFs/LFFs

$$
\begin{aligned}
& f_{e / e}^{(0)}(\xi)=\delta(\xi-1) \\
& f_{e / e}^{(1)}\left(\xi, \mu^{2}\right)=\frac{\alpha}{2 \pi}\left[\frac{1+\xi^{2}}{1-\xi} \ln \frac{\mu^{2}}{(1-\xi)^{2} m_{e}^{2}}\right]_{+}
\end{aligned}
$$

$D_{e / e}^{(0)}(\zeta)=\delta(\zeta-1)$
$D_{e / e}^{(1)}(\zeta, \mu)=\frac{\alpha}{2 \pi}\left[\frac{1+\zeta^{2}}{1-\zeta} \ln \frac{\zeta^{2} \mu^{2}}{(1-\zeta)^{2} m_{e}^{2}}\right]+$

Evolved LDFs

Subtraction trick

$$
\begin{aligned}
\sigma=\int_{\zeta_{\min }}^{1} d \zeta \int_{\xi_{\min (\zeta)}}^{1} d \xi f(\xi) d(\zeta) H(\xi, \zeta) \\
\sigma=\int_{\zeta_{\min }}^{1} d \zeta d(\zeta)[g(\zeta)-g(1)]+g(1) \frac{\zeta_{\min }}{2 \pi i} \int d N \zeta_{\min }^{-N} \frac{D_{N}}{N-1} D_{N}=\int_{0}^{1} d \zeta \zeta^{N-1} d(\zeta) \\
g(\zeta)=\int_{\xi_{\min }(\zeta)}^{1} d \xi f(\xi)[H(\xi, \zeta)-H(1, \zeta)]+H(1, \zeta) \frac{\xi_{\min }(\zeta)}{2 \pi i} \int d N \xi_{\min }^{1}(\zeta)^{-N} \frac{F_{N}}{N-1}
\end{aligned}
$$

We remove the numerically problematic region and compute the difference accurately in Mellin space

What about spin structures? arXiv:2002.08384 (hep-ph)

[Submitted on 19 Feb 2020 (v1), last revised 2 Sep 2020 (this version, v2)]

Origin of single transverse-spin asymmetries in high-energy collisions

Justin Cammarota, Leonard Gamberg, Zhong-Bo Kang, Joshua A. Miller, Daniel Pitonyak, Alexei Prokudin, Ted C. Rogers, Nobuo Sato

Transversity

Sivers

$$
\begin{aligned}
& d \sigma \\
& \overline{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}= \\
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& +\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}} \\
& +S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{s}\right)}\right) \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right. \\
& \left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\},
\end{aligned}
$$

- Curves are a fits
- Dots are full theory calculations

Collins

Summary/Outlook

- In the presence of QED radiation, the q direction is not fixed
- The experimental Breit Frame does not need to coincide with the actual Breit-frame needed in QCD factorization
- QED effects needs to take into account for the next frontier

