EIC impact study on the tensor charge from a QCD global analysis of SSAs

Zhongbo Kang UCLA & CFNS

🔰 @ZhongboK

APS GHP 2021 April 14, 2021

Imaging a proton

Imagine of the proton

Nucleon 1D and 3D imaging

Collinear PDFs: Longitudinal motion

 $f(x, k_T)$

TMDs: Longitudinal + transverse motion

PDFs and TMDs

- They are usually probed in different QCD factorization framework
 - PDFs: process with single hard scale, e.g. $p + p \rightarrow h(p_T) + X$

TMDs: processes with two scales, e.g. SIDIS, Drell-Yan, and dihedron in e+e-

- However, they are closely related to each other
 - In parton model, related via naïve equation of motion

$$f(x) = \int d^2k_T f(x, k_T)$$

• In pQCD, they are related via operator product expansion $f(x, k_T) \xrightarrow{k_T \gg \Lambda_{\text{QCD}}} C(x, k_T) \otimes f(x)$

Applying to all relevant TMDs and corresponding collinear functions

TMD parton distribution

Examples: parton model

Sivers function and Qiu-Sterman function (collinear twist-3)

$$\int_{S} \frac{q}{p} \int_{X} \frac{k_{\perp}}{x} f_{q/h^{\uparrow}}(x, \mathbf{k}_{\perp}, \vec{S}) \equiv f_{q/h}(x, k_{\perp}) - \frac{1}{M} f_{1T}^{\perp q}(x, k_{\perp}) \vec{S} \cdot (\hat{p} \times \mathbf{k}_{\perp})$$

$$\pi F_{FT}(x,x) = \int d^2 \vec{k}_T \, \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T^2) \equiv f_{1T}^{\perp(1)}(x)$$

Collins function and collinear twist-3 fragmentation function

$$\begin{array}{c} \begin{array}{c} q \\ \hline p_{\perp} \\ \hline S_{q} \end{array} & D_{h/q}(z,p_{\perp}) = D_{1}^{q}(z,p_{\perp}^{2}) + \frac{1}{zM_{h}}H_{1}^{\perp q}(z,p_{\perp}^{2})\vec{S}_{q} \cdot \left(\hat{k} \times p_{\perp}\right) \\ \\ \hline H_{1}^{\perp (1)}(z) \equiv z^{2} \int d^{2}\vec{p}_{\perp} \frac{p_{\perp}^{2}}{2M_{h}^{2}}H_{1}^{\perp}(z,z^{2}p_{\perp}^{2}) \end{array} \end{array}$$

Early naïve test

- Extracting Qiu-Sterman function from $p + p \rightarrow h(p_T) + X$
 - Assuming A_N is fully generated from Qiu-Sterman mechanism

Extracting Sivers function from SIDIS process

$$\frac{d\sigma(S_{\perp})}{dx_B dy dz_h d^2 P_{h\perp}} = \sigma_0(x_B, y, Q^2) \left[F_{UU} + \sin(\phi_h - \phi_s) F_{UT}^{\sin(\phi_h - \phi_s)} \cdots \right]$$

Sign mismatch

Seems not being consistent with parton model relation

Kang, Qiu, Vogelsang, Yuan, 2010

Towards solving sign mismatch puzzle

- People quickly realized that twist-3 fragmentation functions also contribute to pp A_N (besides Qiu-Sterman contribution)
 - Early results by Kang, Yuan, Zhou, Koike, Metz, Pitonyak, Gamberg, Prokudin, ...
 - One always wonders if it is possible to perform a global analysis to include SIDS, Drell-Yan, e+e-, and pp A_N data
 - It took several years to get it done due to the hard work of Pitonyak, Sato, Prokduin, Gamberg, and others

$$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array}$$

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato arXiv: 2002.08384, PRD

Global fit

 z_2

 z_2

 $P_{h\mathrm{T}}$

Extracted functions

transversity

Qiu-Sterman function [Sivers first moment]

Twist-3 FFs [Collins first moment]

Tensor charge

SIDIS \rightarrow (SIDIS + SIA) \rightarrow GLOBAL : $g_T = 1.4(6) \rightarrow 0.87(25) \rightarrow 0.87(11)$

- Precision significantly improves by including A_N data
- Agreement with lattice, especially δu

 $\delta u = 0.72(19), \, \delta d = -0.15(16)$

 Uncertainty still larger (100% for d) than lattice, can be further improved via EIC or SoLID@JLab

EIC impact study

Pseudo-data generated by R. Seidl

Gamberg, Kang, Prokuin, Sato, Seidl, arXiv: 2101.06200, PLB in press

0.2 < z < 0.6, $Q^2 > 1.63 \text{ GeV}^2$, $0.2 < P_{hT} < 0.9 \text{ GeV}$

EIC Pseudo-data			
Observable	Reactions	CM Energy (√S)	N _{pts.}
Collins (SIDIS)	$e + p^{\uparrow} \rightarrow e + \pi^{\pm} + X$	141 GeV	756 (π ⁺) 744 (π ⁻)
		63 GeV	634 (π ⁺) 619 (π ⁻)
		45 GeV	537 (π ⁺) 556 (π ⁻)
		29 GeV	464 (π ⁺) 453 (π ⁻)
	$e + {}^{3}He^{\uparrow} \rightarrow e + \pi^{\pm} + X$	85 GeV	647 (π ⁺) 650 (π ⁻)
		63 GeV	$\begin{array}{c} 622 \ (\pi^+) \\ 621 \ (\pi^-) \end{array}$
		29 GeV	461 (π ⁺) 459 (π ⁻)
		Total EIC N _{pts.}	8223

- Polarization 70%
- Each beam energy accumulated luminosity 10 fb⁻¹
- PythiaeRHIC, eic-smear package

Impact of EIC data on TMDs

 EIC data will significantly reduce the uncertainties in the extracted transversity (and Collins function)

EIC impact on tensor charge

- EIC data would allow extraction of tensor charge to be on the similar precision as lattice results
 - With e+p would allow extraction of δu to be closer to lattice
 - With both e+p and e+He3, the phenomenological extraction of both u and d tensor charges are comparable to lattice

A few words on EIC + SoLID

- Kinematic coverage
 - SoLID@Jlab sits in larger x and lower Q with much higher luminosity, thus explore TMD in the region complementary to EIC
 - Non-perturbative contribution in TMD evolution is much larger in such a region, thus could provide unique opportunities for TMD evolution

Grewal, Kang, Qiu, Signori, 2003.07453, PRD

Impact on the transversity

- SoLID can reduce the relative uncertainty of transversity at large x
- Overall, the uncertainty improves the most with EIC + SoLID

QCD Evolution 2021 ONLINE workshop

- Our announcement will be sent out later this week
 - May 10 14, 2021 (canceled in 2020): <u>https://conferences.pa.ucla.edu/qcd-evolution/</u>
 - Presentation (ZOOM) + Social/Coffee break (Wonder.me)
- Social medium (workshop official twitter, transfer to the next organizing chair)
 - Following us at twitter: <u>https://twitter.com/qcd_evolution</u>
 - Contact (Zhongbo Kang, Alexei Prokudin, Leonard Gamberg) if you want us to post/retweet something related, or if you want us to follow you

https://conferences.pa.ucla.edu/qcd-evolution/

Local organizers: Zhongbo Kang (UCLA), chair Kyle Lee (LBL) Dingyu Shao (UCLA/Fudan U.) John Terry (UCLA) Fanyi Zhao (UCLA) Organizing committee: Alexel Prokudin (Penn State Berks & JLab) Ian Cloet (ANL) Martha Constantinou (Temple) Leonard Gamberg (Penn State Berks) Yoshitaka Hatta (BNL) Simonetta Liut (UNA) Anatoly Radyushkin (JLab) Ivan Vitev (LANL)

Official account for QCD Evolution Workshop series. The latest edition: conferences.pa.ucla.edu/qcd-evolution/ will be held during May 10 - 14, 2021.

📰 Joined March 2021

