N³LO extraction of the Sivers functions from SIDIS, DY and W±/Z data

Alexei Prokudin

M. Bury, AP, A. Vladimirov, PRL 126, 112002 (2021) $\Phi_{q \leftarrow h}^{i \prime - 1}(x, b) = f_1(x, b) + i \epsilon_T^{\mu\nu} b_\mu s_\nu M f_1^{\perp}(x, b)$ Our understanding of hadron evolves: TMDs with Polarization

Nucleon emerges as a strongly interacting, 1 relativistic bound state of quarks and \widetilde{gluo}_{RS_1}

X

xp,

z P

The Sivers function

Unpolarized quarks in trans. pol. nucleon

- Causes asymmetries in SIDIS and DY
- Changes sign in DY w.r.t. SIDIS

 $\Phi_{q \leftarrow h}^{i \prime - i}(x, b) = f_1(x, b) + i \epsilon_T^{\mu\nu} b_\mu s_\nu M f_1^{\perp}(x, b)$ Our understanding of hadron evolves: TMDs with Polarization

xp,

Nucleon emerges as a strongly interacting, 1 relativistic bound state of quarks and gluo $\overline{ns_1}$

TMD EVOLUTION CONTAINS NON-PERTURBATIVE COMPONENT

TMD evolution is a two scale evolution
Remarkably simple in the zeta-prescription

Scimemi, Vladimirov (18), (20) Vladimirov (20)

$$F(x,b;\mu,\zeta) = \left(\frac{\zeta}{\zeta_{\mu}(b)}\right)^{-\mathcal{D}(b,\mu)} F(x,b)$$

- F(x,b) is the "optimal" TMD
- $\zeta_{\mu}(b)$ calculable function
- $\mathcal{D}(b,\mu)$ Colins-Soper kernel or rapidity anomalous dimension. Fundamental universal function related to the properties of QCD vacuum

THE SIVERS ASYMMETRY

DATA SELECTION

Bury, Prokudin, Vladimirov (2021)

Dataset name	Ref.	Reaction	# Points	
Compass08	[36]	$d^{\uparrow} + \gamma^* \to \pi^+$	1 / 9	•
		$d^{\uparrow} + \gamma^* \to \pi^-$	1 / 9	
		$d^{\uparrow} + \gamma^* \to K^+$	1 / 9	
		$d^{\uparrow} + \gamma^* \to K^-$	1 / 9	_
Compass16	[39]	$p^{\uparrow} + \gamma^* \to h^+$	5 / 40	
Compassio		$p^{\uparrow} + \gamma^* \to h^-$	5 / 40	_
Hermes	[35]	$p^{\uparrow} + \gamma^* \to \pi^+$	11 / 64	
		$p^{\uparrow} + \gamma^* \to \pi^-$	11 / 64	
		$p^{\uparrow} + \gamma^* \to K^+$	12 / 64	
		$p^{\uparrow} + \gamma^* \to K^-$	12 / 64	_
JLab	[41, 42]	$^{3}He^{\uparrow} + \gamma^{*} \rightarrow \pi^{+}$	1 / 4	
		$^{3}He^{\uparrow} + \gamma^{*} \rightarrow \pi^{-}$	1 / 4	
		$^{3}He^{\uparrow} + \gamma^* \to K^+$	1 / 4	
		$^{3}He^{\uparrow} + \gamma^{*} \rightarrow K^{-}$	0 / 4	_
SIDIS total			63	-
CompassDY	[40]	$\pi^- + d^\uparrow \to \gamma^*$	2/3	•
Star.W+		$p^{\uparrow} + p \rightarrow W^+$	5 / 5	•
Star.W-	[43]	$p^{\uparrow} + p \rightarrow W^{-}$	5 / 5	
Star.Z		$p^{\uparrow} + p \rightarrow \gamma^*/Z$	1 / 1	-
DY total			13	-
Total			76	_

 Only P_T dependence used to avoid double counting
Data selection compatible with TMD factorization requirement

$$\delta = \frac{|P_{hT}|}{zQ}$$
 (in SIDIS), $\delta = \frac{|q_T|}{Q}$ (in DY).

 $\langle Q \rangle > 2 \; {\rm GeV} \qquad {\rm and} \qquad \delta < 0.3$

FIT RESULTS

Bury, Prokudin, Vladimirov (2021)

 Replica method using Artemide framework
Errors both from the data and the uncertainty due to unpolarized TMD

Name	χ^2/N_{pt} [SIDIS]	$\chi^2/N_{pt}[\mathrm{DY}]$	χ^2/N_{pt} [total]
SIDIS at N ³ LO	$0.87^{+0.13}_{+0.03}$	$1.23^{+0.50}_{-0.24}$ no fit	$0.93^{+0.16}_{+0.01}$
SIDIS+DY at $N^{3}LO$	$0.88^{+0.15}_{+0.04}$	$0.90^{+0.31}_{+0.00}$	$0.88^{+0.15}_{+0.05}$

- Unbiased parametrization
- ▶ No tension between SIDIS and DY data universality
- ▶ Good convergence of the fit for all data sets

Bury, Prokudin, Vladimirov (2021)

HERMES 20 3D binning description

Filled in points used in the fit

Bury, Prokudin, Vladimirov (2021)

COMPASS SIDIS data

Bury, Prokudin, Vladimirov (2021)

Pion induced Drell-Yan, COMPASS

W/Z production, STAR

SIVERS FUNCTION IN THE MOMENTUM SPACE

SIVERS FUNCTION IN THE MOMENTUM SPACE

Bury, Prokudin, Vladimirov (2021)

Comparison to Jam20 (LO) analysis

Jam20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Bury, Prokudin, Vladimirov (2021)

NUCLEON TOMOGRAPHY

Bury, Prokudin, Vladimirov (2021)

$$\rho_{1;q \leftarrow h^{\uparrow}}(x, \mathbf{k}_T, \mathbf{S}_T, \mu) = f_{1;q \leftarrow h}(x, k_T; \mu, \mu^2) - \frac{k_{Tx}}{M} f_{1T;q \leftarrow h}^{\perp}(x, k_T; \mu, \mu^2)$$

NUCLEON TOMOGRAPHY

Bury, Prokudin, Vladimirov (2021)

$$\rho_{1;q \leftarrow h^{\uparrow}}(x, \mathbf{k}_T, \mathbf{S}_T, \mu) = f_{1;q \leftarrow h}(x, k_T; \mu, \mu^2) - \frac{k_{Tx}}{M} f_{1T;q \leftarrow h}^{\perp}(x, k_T; \mu, \mu^2)$$

THE QIU-STERMAN MATRIX ELEMENT

Bury, Prokudin, Vladimirov (2020)

Invert the formula for Operator Product Expansion of Sivers via the QS functions

Scimemi, Tarasov, Vladimirov (19)

$$T_{q}(-x,0,x;\mu_{b}) = -\frac{1}{\pi} \left(1 + C_{F} \frac{\alpha_{s}(\mu_{b})}{4\pi} \frac{\pi^{2}}{6} \right) f_{1T;q\leftarrow h}^{\perp}(x,b) - \frac{\alpha_{s}(\mu_{b})}{4\pi^{2}} \int_{x}^{1} \frac{dy}{y} \left[\frac{\bar{y}}{N_{c}} f_{1T;q\leftarrow h}^{\perp} \left(\frac{x}{y}, b \right) + \frac{3y^{2}\bar{y}}{2x} G^{(+)} \left(-\frac{x}{y}, 0, \frac{x}{y}; \mu_{b} \right) \right] + \mathcal{O}(a_{s}^{2}, b^{2})$$

$$\mu_b = \frac{2e^{-\gamma_E}}{b}$$

We choose $b = 0.11 \text{ (GeV}^{-1}), \ \mu_{\rm b} = 10 \text{ (GeV)}$

and estimate gluon contribution $G^{(+)} = \pm (|T_u| + |T_d|)$

CONCLUSIONS

- We have extracted Sivers function from the first global fit of SIDIS, pion-induced Drell-Yan and W±/Z-bozon production experimental data at N3LO precision
- Conservative data cuts are used to ensure validity of factorization and unbiased parametrization
- Good agreement between SIDIS and DY data in an analysis with TMD evolution is achieved for the first time
- The Qiu-Sterman functions are extracted in a model independent way
- Our results set a new benchmark and the standard of precision for studies of TMD polarized functions

BACKUP SLIDES

.

.

.

SIGN CHANGE

Bury, Prokudin, Vladimirov (2020)

Large contribution from antiquark Sievers functions to DY makes it possible to describe data without the sign change

$$f_{1T}^{\perp sea} \to -f_{1T}^{\perp sea}$$

