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Collins-Soper Equations

µ = renormalization scale

� = Collins-Soper parameter

Eq. (1.1) in b-space reads

f?
1T (x, b; µ, ⇣)

[SIDIS]

= �f?
1T (x, b; µ, ⇣)

[DY]

. (2.3)

For definiteness, in the formulas for a particular process we use the notation f?
1T for the Sivers

function without explicit indication of the process, and the sign change between DY and SIDIS is
implemented in calculations. All our results of the Sivers function extraction will be presented for
the SIDIS definition.

The dependence on the scales µ and ⇣ is given by a pair of TMD evolution equations [4, 68, 74]

µ2 dF (x, b; µ, ⇣)

dµ2
=

�
F

(µ, ⇣)

2

F (x, b; µ, ⇣), (2.4)

⇣
dF (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣), (2.5)

where F is any TMD distribution (f1, f?
1T , or D1 in the current context). The first equation is

the ordinary renormalization group equation, with �
F

being the ultraviolet anomalous dimension
for the TMD operator. The second equation is the result of the factorization of rapidity anoma-
lous dimension, with D being the Collins-Soper kernel2 (or rapidity anomalous dimension). The
Collins-Soper kernel is a fundamental universal function that has explicit operator definition and
parametrizes properties of QCD vacuum [75]. It is a universal function, nonperturbative at large-
b while at small-b it is calculable in terms of the perturbative expansion in the strong coupling
constant ↵

s

, whereas it has to be extracted from the experimental data. Both quark and rapidity
anomalous dimensions are known up to N3LO in the perturbative regime, see Refs. [76–79].

Using the evolution equations one relates measurements performed at different energies. It is
convenient to select certain value of the pair (µ, ⇣) as a reference scale. There are several choices
of the reference scale (µ, ⇣) used in the literature, see Refs. [4, 17, 68]. In this work we use the
so-called ⇣-prescription [68]. It consists in selection of the reference scale (µ, ⇣) = (µ, ⇣

µ

(b)) on the
equipotential line (of (�

F

, �D)-field) that passes through the saddle point. In this case, the reference
TMD distribution, called the optimal TMD distribution, is independent on µ (by definition) and
perturbatively finite in the whole range of µ and b. The solution of the TMD evolution equations
from Eqs. (2.4, 2.5) can be written in the following simple form

F (x, b; µ, ⇣) =

✓

⇣

⇣
µ

(b)

◆�D(b,µ)

F (x, b), (2.6)

where F (x, b) on the right-hand side of the equation (2.6) is the optimal TMD distribution [65].
The functions ⇣

µ

(b) is a known function [80] of the nonperturbative Collins-Soper kernel. In our
notations, the optimal TMD distribution F (x, b) has no scaling arguments, which emphasizes its
scale independence.

2.2 Sivers asymmetry in SIDIS

The differential SIDIS cross section of the inclusive hadron production in the electron scattering off
a transversely polarized target (e(l) + h1(P, S) ! e(l0) + h2(ph) + X) has the following structure
[13, 81–83]

d�

dx dy dz d�
S

d�
h

dP 2
hT

=

↵2
em

(Q)

Q2

y

2(1 � ")

(

F
UU,T

+ |S?|sin(�
h

� �
S

)F
sin(�h��S)
UT,T

+ ...

)

,(2.7)

2Our definition of the rapidity anomalous dimension corresponds to K̃ and �⌫ used in Refs. [4] and [74] as
D = �K̃/2 = ��⌫/2.
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TMD evolution is a two scale evolution
Remarkably simple in the zeta-prescription
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THE SIVERS ASYMMETRY
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Figure 1. The dependence of the single-spin Sivers asymmetry on Q at fixed values of x = 0.12,
z = 0.32, and PhT = 0.14 GeV (these values correspond to a particular bin of HERMES [35]). Different
perturbative orders are compared. In all cases unpolarized TMD PDF, TMD FF, the Sivers function and
the nonperturbative part of the CS kernel are the same. The change of the perturbative order influences
the order of perturbative part of CS kernel, TMD anomalous dimension.

evolution factor R. Each of these factors governs dependence on a particular kinematic variable, x

and z for TMD distributions, and Q for evolution factor, and altogether they are integrated over b

with a Bessel function.
The single-spin Sivers asymmetry that is measured in SIDIS experiments, is the ratio of struc-

ture functions

A
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Combining expressions from Eqs. (2.10, 2.11, 2.13) we obtain the following formula
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. (2.16)

The dependence on Q in (2.16) is enclosed in the factors R(b, Q). They are the only part of
our computation that depends on the perturbative input since the hard coefficient functions |C

V

|2
exactly cancel in the ratio Eq. (2.16). The perturbative order is defined by the order of TMD
anomalous dimension (2.4) and by the perturbative part of CS-kernel (2.5) (see also Eq. (2.29)).
Nowadays, these anomalous dimensions are known up to three-loop order, i.e. up to ↵3

s

[76–79].
This maximum order (the �

cusp

part is taken with one order higher, i.e. at ↵4
s

[89]) we refer as
N3LO, according to the standard nomenclature (see Ref. [18] for extended discussion and references).
Currently, one can define four consequent orders of perturbative input, starting from LO, which
contains �

cusp

at LO, and null for other anomalous dimensions. In Fig. 1 we demonstrate3 the
comparison of different orders and the general behavior of asymmetry as a function of Q. The
convergence of the series is good. The difference between orders is almost homogeneous at different
Q and ⇠ 50% at LO!NLO, ⇠ �7% at NLO!NNLO, and ⇠ 3% at NNLO!N3LO. Also, we notice

3We anticipate and use in Fig. 1 our results of extraction of the Sivers function that we will perform in Sec. 4.1.
The Q dependence of the asymmetry depends mainly on the evolution factor R that is known from the analysis
of unpolarized data. The dependence on the parameters describing nonperturbative TMD functions is quite weak
therefore a similar Q behavior is anticipated for all TSSAs that include J1

⇣
b|PhT |

z

⌘
.
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Artemide used 

apart from the usual constraints. We require f?1T (x ! 1, b) . (1 � x), f?1T (x ! 0, b) . x�1 to
ensure integrability and vanishing of the Sivers function at x = 0 and x = 1. Also, we require that
f?1T (x, b) is a function of x and b2 to mimic the operator product expansion structure. We have
explored many parametric forms and selected the following one, which is flexible enough to reveal
the Sivers function, but at the same time is not overwhelmed with free parameters:

f?1T ;q h

(x, b) = N
q

(1 � x)x�q
(1 + ✏

q

x)

n(�
q

, ✏
q

)

exp

✓

� r0 + xr1p
1 + r2x2b2

b2
◆

, (2.31)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such that
Z 1

0
dxf?1T ;q h

(x, 0) = N
q

. (2.32)

The b-dependent factor mimics f
NP

(x, b) used in SV19 fit, with a reduced number of parameters.
Notice that b and x dependencies do not factorize in our parametrization. The experimental data
on Sivers asymmetries is available for various final states, including charged pions and kaons. The
quark composition of those final states allows access to u, d, s quark flavors but is not sufficient to
distinguish other sea quarks, such as ū, ¯d, and s̄. The Sivers function for heavy quark flavors b and
c cannot be extracted with the current data either. Thus, we will distinguish separate functions for
u, d, s quarks, and a single sea Sivers function for ū, ¯d and s̄ quarks. We nullify the Sivers function
for b and c flavors. We also set �

s

= �
sea

and ✏
s

= ✏
sea

= 0, since they are not restricted by the
existing experimental data. Large-x region of the data is also limited at the moment to x . 0.5

and we therefore are using a general (1 � x) factor in our parametrization. In total we have 12
free parameters: N

u

, N
d

, N
s

and N
sea

that dictates the general scale, �
u

, �
d

and �
sea

that gives
small-x asymptotic (�

i

> �1), ✏
u

and ✏
d

to fine-tune of valence distributions, and r0, r1 and r2 for
x-dependence in parameterization of transverse momentum behavior (r

i

> 0).
Let us emphasize that the absence of small-b matching in the optimal Sivers function is not in

contradiction with the perturbative order of TMD evolution (NNLO and N3LO in the current case)
or the perturbative order of matching to other distributions (NNLO for unpolarized distributions).
The utilization of different orders for components in TMD factorization is consistent within the ⇣-
prescription, as well as, in other schemes with fixed reference scale for TMD distributions, discussed
e.g. in Ref. [94], but is not consistent in the resummation-like schemes e.g. used in Refs [27, 29, 31].
In the latter scheme, one would need to use the matching function for Sivers function at N3LO,
which is not yet available [73]. For resummation-like schemes of scale-fixation, where the scales of
TMD distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee the
compensation of scaling logarithms.

3 Global analysis procedure

In this Section we discuss basic principles of the global QCD analysis, data selection, fit procedure,
and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative transverse
momentum �, defined as

� =

|P
hT

|
zQ

(in SIDIS), � =

|q
T

|
Q

(in DY). (3.1)
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12 parameters, q=u, d, s, sea

where

q2 = �Q2, x =

Q2

2P · q
, y =

P · q

P · l
, z =

P · P
h

P · q
, " =

1 � y

1 � y +

y

2

4

, (2.8)

where q = l � l0 is the momentum of the virtual photon. The variables �
h

and P
hT

are the angle
and the absolute value of transverse component of the produced hadron’s momentum, measured
in the laboratory frame. The azimuthal angles for transverse components of the produced hadron
(�

h

) and the spin of the target hadron (�
S

) are defined relative to the lepton plane [84]. The dots
denote other angular modulations that are not interesting in the current context, and also the power
suppressed structure functions [13], such as F

UU,L

and F
sin(�h��S)
UT,L

, which do not contribute at our
order of accuracy. We define the shorthand notation

BSIDIS

n

[fD] ⌘
X

q

e2
q

Z 1

0

bdb

2⇡
bnJ

n

✓

b|P
hT

|
z

◆

f
q h1(x, b; µ, ⇣1)Dq!h2(z, b; µ, ⇣2) (2.9)

where f and D are TMD PDF and FF, J
n

is the Bessel function of the first kind and e
q

are electric
charges of quarks q and the summation runs over all active quarks and antiquarks. Within the
TMD factorization the expressions for structure functions F

UU,T

and F
sin(�h��S)
UT,T

are

F
UU,T

=

�

�C
V

(Q2, µ2
)

�

�

2 BSIDIS

0 [f1D1] , (2.10)

F
sin(�h��S)
UT,T

= �M
�

�C
V

(Q2, µ2
)

�

�

2 BSIDIS

1

⇥

f?1TD1

⇤

, (2.11)

where C
V

is the quark vector form-factor and the hadron mass M is originated from the definition
of the Sivers function Eq. (2.1).

Let us emphasize the combination |P
hT

|/z that enters the argument of the Bessel function
in Eq. (2.9). It is originated from the Lorenz transformation from the factorization frame, where
the factorization theorem is derived, to the laboratory photon-proton center of mass frame, where
the experimental measurement is performed in which experimental data are usually analyzed, see
Ref. [84]. This combination serves as a small parameter, and power corrections to Eqs. (2.10) and
(2.11) have a generic size O((P

hT

/z/Q)

2
). The accurate transformation between the frames must

account for masses of initial and final hadrons. In this case, the argument of the Bessel function is
more complicated [18]. Here, we omit these complications, which is valid in Q ! 1 limit.

The scales of the factorization should be selected such that µ ⇠ Q, and ⇣1⇣2 = Q4 [4, 11, 74, 85–
87]. We use

µ2
= Q2, ⇣1 = ⇣2 = Q2. (2.12)

The resulting products of TMD distributions are to be evolved to the scale of the experimental
measurement. Since the TMD evolution is independent of the flavor and the spin, all structure
functions (at the leading TMD twist) have common evolution properties [88]. In the case of the
⇣-prescription, using Eq. (2.6) one derives that products of TMD distributions in Eq. (2.9) turn
into

f
q h1(x, b; Q, Q2

)D
q!h2(z, b; Q, Q2

) = R(b, Q)f
q h1(x, b)D

q!h2(z, b) , (2.13)

where we introduced the evolution factor

R(b, Q) =

✓

Q2

⇣
Q

(b)

◆�2D(b,Q)

(2.14)

Therefore, in the TMD factorization framework structure functions are Fourier transforms of prod-
ucts of three b-dependent universal factors: two TMD distributions f

q h

and D
q!h

, and the
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apart from the usual constraints. We require f?1T (x ! 1, b) . (1 � x), f?1T (x ! 0, b) . x�1 to
ensure integrability and vanishing of the Sivers function at x = 0 and x = 1. Also, we require that
f?1T (x, b) is a function of x and b2 to mimic the operator product expansion structure. We have
explored many parametric forms and selected the following one, which is flexible enough to reveal
the Sivers function, but at the same time is not overwhelmed with free parameters:

f?1T ;q h

(x, b) = N
q

(1 � x)x�q
(1 + ✏

q

x)

n(�
q

, ✏
q

)

exp

✓

� r0 + xr1p
1 + r2x2b2

b2
◆

, (2.31)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such that
Z 1

0
dxf?1T ;q h

(x, 0) = N
q

. (2.32)

The b-dependent factor mimics f
NP

(x, b) used in SV19 fit, with a reduced number of parameters.
Notice that b and x dependencies do not factorize in our parametrization. The experimental data
on Sivers asymmetries is available for various final states, including charged pions and kaons. The
quark composition of those final states allows access to u, d, s quark flavors but is not sufficient to
distinguish other sea quarks, such as ū, ¯d, and s̄. The Sivers function for heavy quark flavors b and
c cannot be extracted with the current data either. Thus, we will distinguish separate functions for
u, d, s quarks, and a single sea Sivers function for ū, ¯d and s̄ quarks. We nullify the Sivers function
for b and c flavors. We also set �

s

= �
sea

and ✏
s

= ✏
sea

= 0, since they are not restricted by the
existing experimental data. Large-x region of the data is also limited at the moment to x . 0.5

and we therefore are using a general (1 � x) factor in our parametrization. In total we have 12
free parameters: N

u

, N
d

, N
s

and N
sea

that dictates the general scale, �
u

, �
d

and �
sea

that gives
small-x asymptotic (�

i

> �1), ✏
u

and ✏
d

to fine-tune of valence distributions, and r0, r1 and r2 for
x-dependence in parameterization of transverse momentum behavior (r

i

> 0).
Let us emphasize that the absence of small-b matching in the optimal Sivers function is not in

contradiction with the perturbative order of TMD evolution (NNLO and N3LO in the current case)
or the perturbative order of matching to other distributions (NNLO for unpolarized distributions).
The utilization of different orders for components in TMD factorization is consistent within the ⇣-
prescription, as well as, in other schemes with fixed reference scale for TMD distributions, discussed
e.g. in Ref. [94], but is not consistent in the resummation-like schemes e.g. used in Refs [27, 29, 31].
In the latter scheme, one would need to use the matching function for Sivers function at N3LO,
which is not yet available [73]. For resummation-like schemes of scale-fixation, where the scales of
TMD distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee the
compensation of scaling logarithms.

3 Global analysis procedure

In this Section we discuss basic principles of the global QCD analysis, data selection, fit procedure,
and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative transverse
momentum �, defined as

� =

|P
hT

|
zQ

(in SIDIS), � =

|q
T

|
Q

(in DY). (3.1)
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Figure 2. Distribution of the experimental data over the values of x and � Eq. (3.1).

The large-Q requirement is needed to suppress the power corrections ⇠ M2/Q2 and ⇠ ⇤

2/Q2,
where ⇤ is a general nonperturbative scale of QCD. Since M and ⇤ are ⇠ 1 GeV, we impose the
restriction hQi > 2 GeV, which limits possible power corrections to around 10 � 20% for the lowest
energy data points. The optimal values of � for applicability of TMD factorization were studied in
Ref. [65] (and were further confirmed by independent studies in Refs. [18, 67]), where it was shown
that phenomenologically TMD factorization is valid for � < 0.2 � 0.3, and is strongly violated for
large values of �. In the current study we impose � < 0.3, assuring that we accommodate data
points from as many experiments as possible, still preserving applicability of TMD factorization,
see Fig. 2. Summarizing our data selection cuts, we apply the following selection criteria

hQi > 2 GeV and � < 0.3. (3.2)

These restrictions are consistent with the applicability of the TMD factorization theorem as dis-
cussed in Ref. [65]. However, we hope that a part of power corrections cancels in the ratio of structure
functions measured experimentally (2.16, 2.22). The more stringent conditions (say � < 0.2) would
secure the TMD approach, but they are hardly applicable to the modern data, which is dominated
by the low-energy measurements. Our data selection cuts (3.2) are the most stringent among all
other extractions of Sivers function, compare to Refs. [19–22, 25–30].

The Sivers asymmetry in SIDIS has been measured by HERMES [34, 35], COMPASS [36, 39]5

and JLab Hall A [41] collaborations. DY measurements of the transverse spin-asymmetry were
performed by the COMPASS Collaboration [40] in the pion-induced DY process and by the STAR
Collaboration [43] in W±/Z production. After application of our data selection cuts (3.2) we
have 76 data points in total (63 for SIDIS, and 13 for DY). The distribution of the points in the
(x, �)-plane is shown in Fig. 2. The synopsis of data is presented in Table 1.

A large portion of the SIDIS data comes from a recent HERMES analysis [35] that uses a three-
dimensional kinematic binning and enlarged phase space. It is the three-dimensional binning that
allows a clean separation of the TMD factorization region. On the contrary, the Compass and JLab
measurements provide effectively “one-dimensional binning”, i.e., only one of the kinematic vari-
ables has narrow binning, while the rest are integrated over a wide range. Only the P

hT

-differential
measurements could be studied in such cases. The z-differential and x-differential measurements
have P

hT

integrated over the full kinematic range and thus could not be fully described by the
TMD factorization theorem. Even for the P

hT

-differential binning, the TMD factorization is hard
to apply due to the presence of z�1 in the data selection rules (3.2). Almost every bin of COMPASS

5We do not include COMPASS measurements [37, 38] because we are interested in multi-dimensional binning of
[39] and these two measurements overlap substantially in their experimental sample with [39].
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Dataset name Ref. Reaction # Points Av.Uncertainty

Compass08 [36]

d" + �⇤ ! ⇡+ 1 / 9 1.2%
d" + �⇤ ! ⇡� 1 / 9 1.1%
d" + �⇤ ! K+ 1 / 9 3.4%
d" + �⇤ ! K� 1 / 9 5.1%

Compass16 [39] p" + �⇤ ! h+ 5 / 40 1.6%
p" + �⇤ ! h� 5 / 40 2.0%

Hermes [35]

p" + �⇤ ! ⇡+ 11 / 64 2.6%
p" + �⇤ ! ⇡� 11 / 64 3.1%
p" + �⇤ ! K+ 12 / 64 6.1%
p" + �⇤ ! K� 12 / 64 10.8%

JLab [41, 42]

3He" + �⇤ ! ⇡+ 1 / 4 13.9%
3He" + �⇤ ! ⇡� 1 / 4 8.0%
3He" + �⇤ ! K+ 1 / 4 7.0%
3He" + �⇤ ! K� 0 / 4 –

SIDIS total 63
CompassDY [40] ⇡�

+ d" ! �⇤ 2 / 3 12.2%
Star.W+

[43]
p" + p ! W+ 5 / 5 16.1%

Star.W- p" + p ! W� 5 / 5 32.2%
Star.Z p" + p ! �⇤/Z 1 / 1 33.%
DY total 13
Total 76

Table 1. Synopsis of the data sets used in the analysis. The fourth column “# Points” shows the number
of data points selected after application of cuts from Eq. (3.2) and the total number of available data points.
The last column shows the average uncorrelated error for points in the data set (after application of (3.2)).

and JLab measurements borders with a region of the phase space where the TMD factorization is
strongly violated (P

hT

/z ⇠ Q). Consequently, we were forced to use the average kinematics to
include these data points into the fit. The ignorance of the bin integration effects is compensated
by large uncertainties of these measurements but could lead to a systematic error in our extraction.
We also use the averaged kinematics for HERMES measurement as it is suggested by the HER-
MES collaboration, because effects of the bin-integration are already included in the systematic
uncertainty of the data6.

In the case of DY measurements, the bin integration effects are larger due to the larger bin
sizes. These effects are especially significant for electroweak boson production, where the cross-
section changes rapidly. Thus, we perform the integration over the bin size separately for the
numerator and denominator of Eq. (2.22).

3.2 Fit procedure and estimation of uncertainties

To estimate the goodness of theory prediction against the experimental measurements we use the
�2-test function defined as

�2
=

n

X

i,j=1

(m
i

� t
i

)V �1
ij

(m
j

� t
j

), (3.3)

6We thank Gunar Schnell for clarification of this point.
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The results of our current test are shown in Fig. 5, which has a clear plateau �2/N
pt

' 1 for
� < 0.4. The quality of the fit drops drastically for � > 0.4 for SIDIS. This result agrees with the
general expectations. Indeed, one could expect that power corrections partially cancel in asymmetry,
and thus the kinematic range for the applicability of factorization theorems becomes slightly wider.
Since, in the SIDIS unpolarized case � < 0.3 � 0.35 the observation of rough agreement for � . 0.4

is anticipated.
The situation for DY is less certain because the total number of points is small. All points

included into the fit have � < 0.22 (see Fig. 2). There is only one additional point to include. This
point is measured in pion-induced DY at COMPASS [40], and it has � = 0.36 and a wide q

T

-bin
up to values q

T

' Q. This point is outside of the applicability range, and the prediction strongly
disagrees with the measurement (�2 ⇠ 8). The main source of the disagreement is the denominator
in Eq. (2.22), which becomes negative. The negative values for cross-section are typical for TMD
factorization formula in the region beyond its validity. To get the positive cross-section valid in the
full range of q

T

one should match it to the collinear picture via the so-called Y -term [4]. This goes
far beyond the present study.

We conclude that even though the region of TMD factorization widens slightly for asymmetries,
one has to be cautious when including the data outside of the TMD factorization region. In the
following sections, we analyze only the data with � < 0.3. This value corresponds to our best
estimate of the region of data appropriate for the TMD factorization approach description. Future
work that will include matching to the collinear factorization is needed to widen the region of the
data used in the global analysis.

4 Results of extraction

This is the main Section of our work. We describe in detail results of N3LO extraction of the
Sivers function, also presented in Ref. [10]. We discuss the Sivers function in momentum and
position spaces, discuss positivity constraints, show the 3D tomography of the nucleon via the
Sivers function, extract the Qiu-Sterman functions, and study the significance of the sign change of
the Sivers function between SIDIS and DY.

4.1 Fit of the data

Using the approach described in the previous sections, we performed several fits with different
setups. In particular, we distinguish the fits with and without inclusion of DY data, with a purpose
to estimate the universality of the Sivers function. Also we performed separate fits at NNLO and
N3LO perturbative precision for the TMD evolution. The synopsis of �2 values is presented in
Table 2. The distribution of contributions to �2 per experiments is shown in Table 3. The values
of nonperturbative parameters extracted in these fits are given in Table 4 and in Fig. 6.

Name �2/N
pt

[SIDIS] �2/N
pt

[DY] �2/N
pt

[total]
SIDIS at NNLO 0.88

+0.13
+0.03 1.29

+0.45
�0.30 no fit 0.95

+0.16
+0.00

SIDIS+DY at NNLO 0.90

+0.13
+0.02 0.94

+0.25
�0.01 0.91

+0.13
+0.04

SIDIS at N3LO 0.87

+0.13
+0.03 1.23

+0.50
�0.24 no fit 0.93

+0.16
+0.01

SIDIS+DY at N3LO 0.88

+0.15
+0.04 0.90

+0.31
+0.00 0.88

+0.15
+0.05

Table 2. Values for �2/Npt in different fits. Note, that for the cases included in the fit the CF value of
�2 lies outside the 68%CI. This is because CF realizes the minimum of �2 distribution, whereas the 68%CI
(roughly) excludes 16% of boundary replicas.
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 No tension between SIDIS and DY data — universality 
 Good convergence of the fit for all data sets
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Figure 7. Description of HERMES data [35] for ⇡± and K±, only data with � < 0.5 are shown. The
data are presented as the function of x and the 3D binning of the data is indicated by the bin sizes in PhT

(GeV) and z. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the blue box is
68%CI of the fit of the data and prediction for the data not used in the fit.

differences are the TMD evolution implementation (⇣-prescription vs. CSS-like ansatz) and the
nonperturbative model for the Sivers function. In particular, our parametrization for the Sivers
function is more flexible compared to Ref. [31] and allows sea quark contributions to be large in the
large-x region.

In the remainder of the Section, we will discuss details of the description of various SIDIS and
DY data sets coming from various experiments considered in this analysis (see also Table 3). We
present results of the description and discuss the data.

HERMES data set [35]. In our fit we use the latest updated data on Sivers asymmetry in
SIDIS by the HERMES Collaboration [35] on the proton target for ⇡±, K±. The incident electron
energy is P

lab

= 27.5 GeV. Events were selected subject to the requirements Q2 > 1 GeV2, W 2 >
10 GeV2, 0.1 < y < 0.95, and 0.023 < x < 0.6. Hadrons were accepted if 0.2 < z < 0.7. The data
are presented in a three-dimensional binning in x, z, and P

hT

(GeV). The correlated uncertainty
of the data is 7.3% due to the accuracy of the target polarization determination. Importantly, the
systematic uncertainty of HERMES data already includes possible effects of the bin-integration, and
thus the theory prediction for this data set must be evaluated using the average bin kinematics. For
the SIDIS subset, the largest �2/N

pt

is for K� production measured at HERMES (typical values
⇠ 1.6 for 12 points). The next-to-the-largest �2/N

pt

is for K+-production measured at Hermes
(typical values ⇠ 1.3 for 12 points). The rest of the SIDIS data, for ⇡± and h±, have partial

– 20 –
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COMPASS SIDIS data
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Figure 10. Description of multi-dimensional COMPASS SIDIS proton data [39]. Sivers asymmetry for
z > 0.1 in the four Q2-ranges as a function of x, z and PhT for unidentified charged hadrons h±, only data
with � < 0.5 are shown. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the
blue box is 68%CI of the fit of the data and prediction for the data not used in the fit.

Compass08 [36] and Compass16 [39] data sets. COMPASS measured the Sivers asymmetry
using different targets (iso-scalar samples from 2003-2004 data [36] and proton sample for unidenti-
fied charged hadrons from 2010, multi-dimensional data [39]) with incident muon energy P

lab

= 160

GeV. In these measurements, the cuts on the photon virtuality Q2 > 1 GeV2 and the mass of the
hadronic final state W 2 > 25 GeV2 were applied, as well as 0.1 < y < 0.9. To simulate the isospin
target (deuteron), we make the iso-spin rotation for components of the Sivers function

f?1T,u d

= f?1T,d d

=

f?1T,u p

+ f?1T,d p

2

. (4.1)

The measurement Compass08 is made for ⇡± and K± fragmenting hadrons (we omit the ⇡0 and
K0 measurements because SV19 extraction does not have these fragmentation functions). The
Compass16 measurements is made for charged hadrons h±, which in SV19 are approximated as sum
of pion and kaon components h±

= ⇡±
+ K± ignoring the higher-mass contribution. We show the

description of COMPASS SIDIS data [36] in Fig. 9 and [39] in Fig. 10. One can see that, as in
previous cases, the data description is good even for the data not used in the fit.

CompassDY [40] data set. The data were taken using a high-intensity ⇡� beam of 190 GeV
and the transversely polarized isoscalar NH3 target. Sivers asymmetry was extracted using di-muon
events with the invariant mass between 4.3 GeV and 8.5 GeV. The measured asymmetry, A

UT

, is
given in (2.24). Notice that our definition of A

UT

from Eq. (2.24) corresponds to the definition
from Ref. [40] A

UT

= Asin�S

T

. The data is presented in the one-dimensional binnings over x
⇡

, x
N

,
x
F

, q
T

. In non-q
T

binning, the integration over q
T

spans up to 5 GeV, i.e., includes the domain
with q

T

> Q. Therefore, only the q
T

-binned data could be analyzed within TMD factorization. We
show a description of the data in Fig. 11. One can see that the resulting Sivers function describes
well the data on q

T

-dependence that we use in the fit and predict the data on x
F

-dependence not
used in the fit.

STAR [43] data set. The STAR Collaboration at RHIC measured the transverse single-spin
asymmetry of weak boson ( charged (W±) and neutral (Z/�)) production in polarized proton-proton
collisions at

p
s=500 GeV. It is described by A

N

(2.23) with inclusion of modified factors (2.26, 2.27).
The results were presented as a function of rapidity, y, and the bosons’ transverse momentum, q

T

.
The measured values of asymmetry are much higher (up 60%) than typical asymmetries in SIDIS,
which present a certain problem in their description. We show the description of STAR data [43]

– 22 –
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in Fig. 12. One can see that our global analysis gives a good description of q
T

dependent data
for W± production. We also describe well y dependent data that is not used directly in the fit
for W± and a single point for Z-boson production that we use in the fit. It is the first agreement
with the data of extraction of the Sivers function with TMD evolution to our best knowledge.
For the DY subset, the main contribution to the �2/N

pt

is due to a single Z�boson production
point (A

N

= 0.6 ± 0.33) measured at RHIC. Despite the large error, this single point contributes
significantly with ��2

= (2.9, 1.6, 2.8, 1.6) into fits (SIDIS at NNLO, SIDIS+DY at NNLO, SIDIS
at N3LO, SIDIS+DY at N3LO). Let us notice that for W and Z bosons productions, one should
also account for contributions of c and b quarks, which are currently neglected.

N3LO fit does not essentially change the result of the fit compared to NNLO. It is expected
because the difference between NNLO and N3LO evolution is relatively marginal, see Fig. 1, espe-
cially in comparisons to the large uncertainties of experimental measurements of asymmetries. The
values of �2 are practically unchanged. As for the values of parameters, we observe that they agree
within the error-bands, thus corroborating the stability of evolution effects and the fit results.

4.2 Sivers function in the position and the momentum spaces

The extracted Sivers function in position space for u and d quarks is shown in Fig. 13. Its values have
notably large uncertainties, which we demonstrate by shaded areas. Another distinctive feature of
our extraction is a non-positive definiteness of the Sivers function. The Sivers function does not
have the probabilistic interpretation The Sivers function is related to a difference of unpolarized
quark densities in momentum space inside transversely polarized protons, Eq. (4.2); thus, it can be
positive or negative, and can have nodes [104, 105], which is realized by the parameter ✏. Moreover,
the presence of a node is predicted by various models [104, 106–108]. The Sivers function for u

quark in our extraction, see Fig. 13, turns positive at large-x. However, it can stay negative within
68%CI. Although such behavior looks unusual, it does not contradict any known properties of the
Sivers function.

In the momentum representation the TMD distributions for unpolarized quarks are defined as7
Z

d2b

(2⇡)

2
ei(bkT )

�

[�+]
q h

(x, b; µ, ⇣) = f1;q h

(x, k
T

; µ, ⇣) � ✏µ⌫
T

k
Tµ

S
T⌫

M
f?1T ;q h

(x, k
T

; µ, ⇣), (4.2)

7Notice that we do not distinguish the symbols for the Sivers functions in the position and the momentum spaces,
they are related by the Fourier transform of Eq. (4.4). It is intended by the functional arguments, b or kT , which
function we use.
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Figure 11. Description of Compass DY data [40] as a function of xF and qT (GeV). Solid (open) symbols
data used (not used) in the fit. Blue line is the CF and the blue box is 68%CI of the fit of the data and
prediction for the data not used in the fit.
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Figure 12. Description of the transverse single-spin asymmetry data [43] for W± and Z boson production
measured by STAR in polarized proton-proton collisions at

p
s = 500 GeV. Left column, the data as a

function of y for W± and Z, the right column, the data as a functions of qT GeV for W±. Solid (open)
symbols data used (not used) in the fit. Blue line is the CF and the blue box is 68%CI of the fit of the data
and prediction for the data not used in the fit.

Figure 13. The (b, x)-landscape of the optimal Sivers function f?
1T (x, b) for d-quark (the left panel) and

u-quark (the right panel). The grid shows the CF value, whereas the shaded (blue and green) regions on
the boundaries demonstrate the 68%CI.

where k
T

is the two-component Euclidean vector of traverse momentum, and �

[�+]
q h

is given by the
left-hand-side of Eqn. (2.1). Performing the angular integration in Eq. (4.2) we find

f1;q h

(x, k
T

; µ, ⇣) =

Z 1

0

bdb

2⇡
J0(b|kT |)f1;q h

(x, b; µ, ⇣), (4.3)

f?1T ;q h

(x, k
T

; µ, ⇣) = M2

Z 1

0

bdb

2⇡

b

|k
T

|J1(b|kT |)f?1T ;q h

(x, b; µ, ⇣). (4.4)

The momentum space representation has complicated evolution properties since the TMD evolution
factor is multiplicative in the position space. The notion of the optimal TMD distribution is less
useful in the momentum space because it involves the integration over all scales. For that reason,
we only show the TMD distributions in the momentum space at a fixed scale.
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(a) (b)

(c) (d)

Figure 14. Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks at
x = 0.1 and µ = 2 GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized TMD PDF
extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function is multiplied by �1

and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).

The extracted Sivers function is shown in Fig. 14. The Fourier transformation, Eq. (4.4),
effectively inverses the ranges of variables. Therefore, a large uncertainty at large-b (given by
parameters r0,1,2) transforms to a large uncertainty at small-k

T

. For comparison, we also show
the values and uncertainties of the unpolarized TMD PDFs extracted in SV19 fit. We observe
that the Sivers function’s typical size is about 4-5 times as small as the corresponding unpolarized
distribution. Figure 14 shows the functions at x = 0.1, for other values of x of the data used in our
fit x ⇠ 0.01 � 0.25 profiles are similar.

Figure 15. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.
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 Comparison to Jam20 (LO) analysis 

Jam20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)
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Figure 14. Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks at
x = 0.1 and µ = 2 GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized TMD PDF
extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function is multiplied by �1

and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).

The extracted Sivers function is shown in Fig. 14. The Fourier transformation, Eq. (4.4),
effectively inverses the ranges of variables. Therefore, a large uncertainty at large-b (given by
parameters r0,1,2) transforms to a large uncertainty at small-k

T

. For comparison, we also show
the values and uncertainties of the unpolarized TMD PDFs extracted in SV19 fit. We observe
that the Sivers function’s typical size is about 4-5 times as small as the corresponding unpolarized
distribution. Figure 14 shows the functions at x = 0.1, for other values of x of the data used in our
fit x ⇠ 0.01 � 0.25 profiles are similar.
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Figure 15. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.
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(a) (b)

(c) (d)

Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h

"(x,k
T

,S
T

, µ) = f1;q h

(x, k
T

; µ, µ2
) � k

Tx

M
f?1T ;q h

(x, k
T

; µ, µ2
), (4.7)

where k
T

is a two-dimensional vector (k
Tx

, k
Ty

). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, S

T

= (S
x

, S
y

), where
S
x

= 0, S
y

= 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in k

Tx

, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function
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where k
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is a two-dimensional vector (k
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). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, S
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= (S
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, S
y

), where
S
x

= 0, S
y

= 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in k

Tx

, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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 Invert the formula for Operator Product Expansion of Sivers via the 
QS functions

Scimemi, Tarasov, Vladimirov (19)

4

FIG. 3. Qiu-Sterman function at µ = 10 GeV for dif-
ferent quark flavors, derived from the Sivers function via
Eq. (13). The black line shows the CF value and blue band
shows 68%CI. The brown band shows the band obtained by
adding the gluon contribution G

(+). We compare our results
to JAM20 [35] (gray dashed lines) and ETK20 [34] (orange
dashed lines).

not exclude the same sign of Sivers functions in DY and
SIDIS. The sign of the sea-quark Sivers function plays
here the central role. Indeed, the sign of DY cross-
section is mostly determined by the sea-contribution due
to favored q + q̄ ! W/Z/� sub-process, whereas the sea-
contribution in SIDIS is suppressed. Therefore, with the
current data precision, the flip of the sign for Nsea pa-

rameter alone is sufficient to describe the data and almost
compensates the effect of the overall sign-flip (1) at the
level of the cross-section. The future data from RHIC
and COMPASS together with EIC and JLab will allow
us to establish the confirmation of the sign change (1).

Extracted Sivers functions The extracted Sivers
functions in b-space for u and d-quarks are shown in
Fig. 2. One can see that our results confirm the signs
of u-quark (negative) and d-quark (positive) at middle-x
range known from the previous analyses [20–31, 33–35],
and also shows a node for u-quark at large-x. We have
not explicitly used the positivity relation [71] of Sivers
functions because it is only a LO statement and can be
violated in higher order calculations. However, we veri-
fied numerically that our results do not exhibit any sub-
stantial violation of positivity bounds.

The magnitude of s and sea quarks contribution in our
fit is substantially different from other extractions where
the the biased anzatz f

?
1T (x) / f1(x) is used [22, 24–

31, 33, 34] and the non-valence contribution is artificially
suppressed. In our case, the sea- and s-quark Sivers
functions are comparable in size with u and d-quarks, at
x > 0.1 (and vanish at x < 0.1). Our unbiased extraction
of the Sivers function reproduces large SSA measured in
the DY W

±
/Z processes, see Fig. 1.

Determination of the Qiu-Sterman function The
Sivers function at small-b can be expressed via the oper-
ator product expansion (OPE) through the twist-3 dis-
tributions [56, 57, 72]. At the OPE scale µ = µ

b

⌘
2 exp(��

E

)/b the NLO matching expression [56] depends
only on QS function and can be inverted. We obtain the
following relation

T

q

(�x, 0, x; µ
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i

+ O(a

2
s

, b

2
) ,

where ȳ = 1 � y, ↵

s

is the strong coupling constant,
T

q

and G

(+) are QS quark and gluon functions. This
expression is valid only for small (non-zero) values of b.
We use b ' 0.11 GeV�1 such that µ

b

= 10 GeV. The
resulting QS-functions are shown in Fig. 3. To estimate
the uncertainty due to the unknown gluon contribution
we allow for G

(+)
= ±(|T

u

| + |T
d

|). The resulting 68%CI
uncertainty band and comparison to Refs. [34, 35] are
also shown in Fig. 3.

Conclusions. In this letter, we have presented the
first extraction of the Sivers function that consistently
utilizes previously extracted unpolarised proton and pion
TMDs, and uses SIDIS, pion-induced Drell-Yan, and

W

±
/Z-bozon production experimental data. The extrac-

tion is performed at unprecedented N3LO perturbative
precision within the ⇣-prescription that allows us to un-
ambiguously relate the Sivers function and QS function.
This relation has been used to obtain QS function and to
evaluate the influence of the unknown gluon QS function.
We also examined the significance of the predicted sign
change of Sivers functions in SIDIS and DY processes.
Our results compare well in magnitude with the exist-
ing extractions [20–35] and confirm the signs of Sivers
functions for u and d quarks while we also obtain non
negligible Sivers functions for anti-quarks.

Our results set a new benchmark and the standard of
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b = 0.11 (GeV�1), µb = 10 (GeV)

4

FIG. 3. Qiu-Sterman function at µ = 10 GeV for dif-
ferent quark flavors, derived from the Sivers function via
Eq. (13). The black line shows the CF value and blue band
shows 68%CI. The brown band shows the band obtained by
adding the gluon contribution G

(+). We compare our results
to JAM20 [35] (gray dashed lines) and ETK20 [34] (orange
dashed lines).

not exclude the same sign of Sivers functions in DY and
SIDIS. The sign of the sea-quark Sivers function plays
here the central role. Indeed, the sign of DY cross-
section is mostly determined by the sea-contribution due
to favored q + q̄ ! W/Z/� sub-process, whereas the sea-
contribution in SIDIS is suppressed. Therefore, with the
current data precision, the flip of the sign for Nsea pa-

rameter alone is sufficient to describe the data and almost
compensates the effect of the overall sign-flip (1) at the
level of the cross-section. The future data from RHIC
and COMPASS together with EIC and JLab will allow
us to establish the confirmation of the sign change (1).

Extracted Sivers functions The extracted Sivers
functions in b-space for u and d-quarks are shown in
Fig. 2. One can see that our results confirm the signs
of u-quark (negative) and d-quark (positive) at middle-x
range known from the previous analyses [20–31, 33–35],
and also shows a node for u-quark at large-x. We have
not explicitly used the positivity relation [71] of Sivers
functions because it is only a LO statement and can be
violated in higher order calculations. However, we veri-
fied numerically that our results do not exhibit any sub-
stantial violation of positivity bounds.

The magnitude of s and sea quarks contribution in our
fit is substantially different from other extractions where
the the biased anzatz f

?
1T (x) / f1(x) is used [22, 24–

31, 33, 34] and the non-valence contribution is artificially
suppressed. In our case, the sea- and s-quark Sivers
functions are comparable in size with u and d-quarks, at
x > 0.1 (and vanish at x < 0.1). Our unbiased extraction
of the Sivers function reproduces large SSA measured in
the DY W

±
/Z processes, see Fig. 1.

Determination of the Qiu-Sterman function The
Sivers function at small-b can be expressed via the oper-
ator product expansion (OPE) through the twist-3 dis-
tributions [56, 57, 72]. At the OPE scale µ = µ

b

⌘
2 exp(��

E

)/b the NLO matching expression [56] depends
only on QS function and can be inverted. We obtain the
following relation
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where ȳ = 1 � y, ↵

s

is the strong coupling constant,
T

q

and G

(+) are QS quark and gluon functions. This
expression is valid only for small (non-zero) values of b.
We use b ' 0.11 GeV�1 such that µ

b

= 10 GeV. The
resulting QS-functions are shown in Fig. 3. To estimate
the uncertainty due to the unknown gluon contribution
we allow for G

(+)
= ±(|T

u

| + |T
d

|). The resulting 68%CI
uncertainty band and comparison to Refs. [34, 35] are
also shown in Fig. 3.

Conclusions. In this letter, we have presented the
first extraction of the Sivers function that consistently
utilizes previously extracted unpolarised proton and pion
TMDs, and uses SIDIS, pion-induced Drell-Yan, and

W

±
/Z-bozon production experimental data. The extrac-

tion is performed at unprecedented N3LO perturbative
precision within the ⇣-prescription that allows us to un-
ambiguously relate the Sivers function and QS function.
This relation has been used to obtain QS function and to
evaluate the influence of the unknown gluon QS function.
We also examined the significance of the predicted sign
change of Sivers functions in SIDIS and DY processes.
Our results compare well in magnitude with the exist-
ing extractions [20–35] and confirm the signs of Sivers
functions for u and d quarks while we also obtain non
negligible Sivers functions for anti-quarks.

Our results set a new benchmark and the standard of

We choose

and estimate gluon contribution
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We have extracted Sivers function from the first global fit of 
SIDIS, pion-induced Drell-Yan and W±/Z-bozon production 
experimental data at N3LO precision
Conservative data cuts are used to ensure validity of 
factorization and unbiased parametrization
Good agreement between SIDIS and DY data in an 
analysis with TMD evolution is achieved for the first time
The Qiu-Sterman functions are extracted in a model 
independent way
Our results set a new benchmark and the standard of 
precision for studies of TMD polarized functions 
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Bury, Prokudin, Vladimirov (2020)

f?
1T (SIDIS) = �f?

1T (DY )
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3

Large contribution from antiquark Sievers functions to DY
makes it possible to describe data without the sign change 
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f?sea
1T ! �f?sea

1T

Figure 20. Normalized distribution of replica’s �2 for f?
1T [DY ] = +f?

1T [SIDIS] (yellow) and f?
1T [DY ] =

�f?
1T [SIDIS] (blue) cases. The bands show the 68%CI intervals for �2 values. The continuous blue line is

the �2-distribution with 75 d.o.f. .

f?
1T [DY ] = �f?

1T [SIDIS] f?
1T [DY ] = +f?

1T [SIDIS]

�2/N
pt

0.88

+0.16
+0.06 1.00

+0.22
+0.08

p-value (CF) 0.74 0.44
p-value 68%CI [0.60, 0.34] [0.28, 0.08]

p-value 68%CI (SIDIS) [0.67, 0.42] [0.53, 0.11]
p-value 68%CI (DY) [0.56, 0.17] [0.68, 0.02]

Table 5. Comparison of �2 and p-values between the fit with and without sign-change for Sivers function.

To make a test of the sign change, we performed an independent fit of SIDIS and DY data
with f?

1T [SIDIS] = +f?
1T [DY ], i.e., assuming the Sivers function does not change the sign. The

fit is performed at N3LO. The comparison of fits with and without sign-change is presented in
Table 5. The CV fit demonstrates good values of �2/N

pt

= 1.00, with the 68%CI being [1.08,
1.22]. The (normalized) histograms of �2 replicas for same- and opposite-sign fits are shown in
Fig. 20, together with �2 distribution for N

pt

� 1=75 degrees of freedom. The p-values of different
cases are calculated as areas under the sampling distribution in [�2

tot

, 1) interval, and given in
Table 5. The case f?

1T [SIDIS] = +f?
1T [DY ] has somewhat higher �2, and consequently lower p-value.

Nonetheless, the difference is not large, and 68%CI almost overlap. Therefore, we conclude that
one cannot strictly discriminate with the current experimental data the possibility of the Sivers
function having the same sign in DY and SIDIS.

The fit with f?
1T [SIDIS] = +f?

1T [DY ] demonstrates very different features in comparison to the
fit with the sign-change. In particular, the distribution of �2 for SIDIS and DY independently is
broader. So, 68% CI of �2/N

pt

for SIDIS data is [0.96, 1.21] and for DY data is [0.80, 1.88] (compare
to [0.90, 1.00] and [0.81, 1.27] in the case of the sign-change, correspondingly). Simultaneously, the
68%CI for the total �2 is broader and located at higher values. This indicates a tension with the
data in the same-sign approach, namely, the Sivers function that provides a better description for
SIDIS gives a worse description for DY and vice-versa.

It is also instructive to compare Sivers functions extracted in both fits. We have found that the
parameters extracted in both cases agree within 68%CI’s, except for N

sea

-parameter, which flips
the sign. It shows that u, d, and s components are mainly constrained by the SIDIS data, where the
dominant contribution comes from q +�⇤ ! q sub-process. In the DY process, the anti-quarks play
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