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Scattering amplitudes using Quantum Computers

4 )

Role of boundary conditions in quantum computations of scattering
observables

Rall A. Bricefno, Juan V. Guerrero, Maxwell T. Hansen, and Alexandru M. Sturzu
Phys. Rev. D 103, 014506 — Published 6 January 2021
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Quantum computing may offer the opportunity to simulate strongly interacting field theories, such as
quantum chromodynamics, with physical time evolution. This would give access to Minkowski-
signature correlators, in contrast to the Euclidean calculations routinely performed at present.
However, as with present-day calculations, quantum computation strategies still require the restriction
to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate
the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using
the framework presented in Bricefo et al. [Phys. Rev. D 101, 014509 (2020)], we estimate the volume
effects for various 1 4+ 1D Minkowski-signature quantities and show that these can be a significant
source of systematic uncertainty, even for volumes that are very large by the standards of present-day

Euclidean calculations. We then present an improvement strategy, based in the fact that the finite
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Inclusive scattering

[[] Compton scattering: polarizabilities, PDFs, GPDs,...

[ QN



Inclusive scattering

[[] Compton scattering: polarizabilities, PDFs, GPDs,...



Inclusive scattering

[J Compton scattering: polarizabilities, PDFs, GPDs, ...




Inclusive scattering

[J Compton scattering: polarizabilities, PDFs, GPDs, ...




Inclusive scattering

[J Compton scattering: polarizabilities, PDFs, GPDs, ...




Inclusive scattering

] Compton scattering,
[[] Inclusive neutrino-nucleus scattering,

[[] Neutrinoless double beta decay

...

All can be defined as: I ~ Jd“x e™ 9 (ne| T T 2@ F10) ] 1),

q
long-range "va
amplitudes
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Exclusive vs. inclusive reactions

[] If exclusive and interesting

[] After developing increasingly complex formalism...

[[] Lattice QCD will always win [see talks by David Wilson, Max Hansen...]
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Exclusive vs. inclusive reactions

[] If exclusive and interesting

[] After developing increasingly complex formalism...

[] Lattice QCD will always win

] Inclusive reactions, QC methods may be needed and worth investigating.
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Infinite-volume reactions

O

'complex functions

| kinematic singularities

e

Finite-volume quantities

.

real functions

-/

' power-law finite-volume errors

~~
o

\‘—(\/...

"

k\( For “large” volumes, shouldn’t

these be simply related?
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Real-time QFT calculations

(¢ lattice spacing

¢ finite volume: L

o ) phys
< —
quark masses: mq mq

never free
no asymptotic states
no scattering




Long-range processes in a finite volume

BBDHS formalism for finite-volume long range matrix elements:

1
7'L =T — H(SaQQ) F_l(P, L) _l_M(S) Hl(saQZQf)

b Alessandro Baroni
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Three silver bullets

72 =T — H(SaQQ) -1 H/(SvQ?f)J

(P, L)+ M(s)

[[] Introduce an ie by hand

r OO

T (€) ~ dr e'o'=¢ll (ny| I'Lf (1) 7 1(0)] [ 7);

k/ this is what would be accessed via a

quantum computer or a real-time
calculation

...............................................................................................................................

(12

take an € step away from the poles”
A%—D—o—o—ooo—w—m-;

...............................................................................................................................

For large enough L

and small enough € }




Three silver bullets

1

_ L 2 / 2
E_T H(SaQ )F_l(P,L)—FM(S)H(S’QZf)
[[] Introduce an ie by hand
Te)~ | dre =V (n| T[F5(1) 71(0)] |n;),

[] Exploit symmetry:
] The physical amplitudes depend on a finite number of Lorentz scalars.

[J Boost average

[] Binning/wave packets



TOy M Od € ‘ I N VeStI g atl on no quantum simulations were performed
In principle

A = lim lim A, (¢) I =1lim lim I ;(¢)

€e—=0 L—->0 e—=0L->0

] Do we really need to take the L — oo limit?
] How quickly do we recover the asymptotic behavior?

] Does this depend on the dynamics of the system?




Purely "hadronic” amplitude

In a finite-volume, the spectrum and all observables depend on the total
momentum P = 2zd/L, where d is discrete.

-

1.2
1.0
0.8
2 0.6
—04
0.21

2.2 2.4 2.6 28  E*/m
_J




Purely "hadronic” amplitude

In a finite-volume, the spectrum and all observables depend on the total

momentum P = 2zd/L, where d is discrete.
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Purely "hadronic” amplitude

In a finite-volume, the spectrum and all observables depend on the total
momentum P = 2zd/L, where d is discrete.
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Purely "hadronic” amplitude

In a finite-volume, the spectrum and all observables depend on the total
momentum P = 2zd/L, where d is discrete.
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Purely "hadronic” amplitude
(€, L) - dependence
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Purely "hadronic” amplitude
(€, L) - dependence
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Purely "hadronic” amplitude

(€, L) - dependence
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Compton-like amplitudes




Compton-like amplitudes
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Toy model results
By averaging over mL = [20,25,30] boost with d < mL,

and binning in energy and virtualities...
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Toy model results

By averaging and binning...
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Summary and Outlook

[ Inclusive scattering observables are in principle accessible
M No sophisticated formalism is needed

[ existing formalism serves as diagnostic tool
[J Optimal choices of smearing/binning /boosting?

[] Inelastic processes?

[] Does life get harder or easier in 3 + 1D?

[] Test on toy theory [quantum simulation vs. lattice]
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Spectra

[] Infinite-volume Hamiltonian

4 )
This is what the interaction picture
buys us. At asymptotically large
separations in space/time, we have
nearly free states — which are the

n
Hoo,O 1215 P2 = Pdo = | P1sPos P 2 \/piz + m?2 <\\onlyjes we can generally define. @/
i=0

[[J No gap between states [continuum of states]

oo

H =J d>xH

[[] Asymptotic states satisfy:

Im[s]

Re[s]




Spectra

[] Infinite-volume Hamiltonian [] Finite-volume Hamiltonian
H_ = J d>xH H, = J d>xH
00 V=L3
[[] Asymptotic states satisfy: [[] No asymptotic states:
n A
2 H;|n); =|n);E
Hoo,Olpl’pZ’...le)O: |p1,p2,...pn>02\/pi2+m2 Ll >L | >L n

i=0 [[] Intrinsic gap between states:

[[] No gap between states [continuum of states]

1
E  (L)—E(L) ~ I

Im[s] Im[s]

Re[s] Re[s]




Toy M Od e ‘ no quantum simulations were performed

Scattering amplitude parametrization

_ 1 2.2
M_K—l—ip’ K(s) =m*q

unitary bound
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TOy M Od e ‘ no quantum simulations were performed

Scattering amplitude parametrization
1 g°
M = — K(s) = m?q* 5
=+ —1p mz — S

All-order perturbation theory implies that the Compton-like amplitudes satisfy

T(87Q27 ?f):w2(87Q27 ?f)+A12(S7Q2)M(S) ,21(87623]”>

real and “smooth” for
space-like virtualities

A perfectly reasonable parametrization:

1
w2<57Q27 f?f) — 07 A12(37Q2) — /21(87622) — 1 + QQ/MQ




Boost averaging

The volume effects are encoded in F(P, L), which is not a Lorentz scalar.
Asymptotic behavior F ~ e 1¢% (—1)4

Averaging over different boosts, volume effects are expected to reduce.
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