Coordinate Space Behavior of PDFs and GPDs

Abha Rajan
 Old Dominion University

April 13, 2021 APS GHP 2020 meeting

In collaboration with Simonetta Liuti, University of Virginia

Probing hadron structure, Experiment vs Lattice

- Experimental observables are described using momentum degrees of freedom.
- The physical objects measured in a deep inelastic scattering experiment are the structure functions.
- The process is described by the parton model in the limit of Q^{2} going to infinity and in terms of coordinate space this amounts to z^{2} going to zero - the probed particle is on the lightcone.

- In contrast, lattice QCD observables are calculated in coordinate space and are separated by a space like distance.

Fourier transform Lattice QCD: Coordinate space

The Goal

- Reconstructing PDFs and GPDs using inputs from lattice QCD
- Local operators \rightarrow Mellin moments
- Non local operators \rightarrow Off the light cone

Outline

- Definitions
- Pseudo PDFs and GPDs in a spectator model
- Reconstructing PDFs and GPDs using Mellin moments
- Conclusions

Definitions

On the light cone
Ioffe time $\quad P \cdot z=\nu$

$$
f(x)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x p^{+} z^{-}}\langle p| \bar{\psi}(0) \gamma^{+} \mathcal{U}\left(0, z^{-}\right) \psi\left(z^{-}\right)|p\rangle\right|_{z^{+}=0, z_{T}=0}
$$

Covariant form

$$
\begin{gathered}
\langle p| \bar{\psi}(0) \gamma^{\alpha} \mathcal{U} \psi(z)|p\rangle=M^{\alpha}\left((p z), z^{2}\right) \\
M^{\alpha}\left((p z), z^{2}\right)=2 p^{\alpha} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\alpha} \mathcal{M}_{z}\left((p z), z^{2}\right)
\end{gathered}
$$

X Ji (2013)
Taking $\alpha=+$ and $\mathrm{z}^{+}=\mathrm{z}_{\mathrm{T}}=0$,
Radyushkin (2017)

$$
\langle p| \bar{\psi}(0) \gamma^{+} \mathcal{U} \psi(z)|p\rangle=2 p^{+} \mathcal{M}((p z), 0)
$$

Lin et al (2014)
Alexandrou et al (2014)
Orginos et al (2017)

Non local operators on the lattice

- On the lattice one is restricted to taking $z^{0}=0$

$$
M^{\alpha}\left((p z), z^{2}\right)=2 p^{\alpha} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\alpha} \mathcal{M}_{z}\left((p z), z^{2}\right)
$$

- One way to single out the piece that corresponds to the PDF is to take $\alpha=0$

PDFs in a spectator model

$$
f(x)=\int \frac{d^{2} k_{T} d k^{-}}{(2 \pi)^{4}} \frac{\left(-i g\left(k^{2}\right)\right)^{2} \operatorname{Tr}\left[i(\not k+m) \gamma^{+} i(\not k+m)(\not P+M)\right]}{\left((P-k)^{2}-M_{X}^{2}+i \epsilon\right)\left(k^{2}-m^{2}+i \epsilon\right)^{2}}
$$

Off the light cone PDFs

$$
f\left(k_{3}, P_{3}\right)=\int \frac{d^{2} k_{T} d k^{0}}{(2 \pi)^{4}} \frac{\left(-i g\left(k^{2}\right)\right)^{2} \operatorname{Tr}\left[i(k+m) \gamma^{0} i(k+m)(\not P+M)\right]}{\left((P-k)^{2}-M_{X}^{2}+i \epsilon\right)\left(k^{2}-m^{2}+i \epsilon\right)^{2}}
$$

- Quasi PDFs are defined at constant P_{z}

Bhattacharya et al (2018)

- Pseudo PDFs are defined at constant z^{2}

Off the light cone PDFs

Quasi PDFs - defined at constant P_{z}

Off the light cone PDFs

Points at fixed z. For lower values of loffe time, large z contributions come from lower momentum P_{z} (tagged by color).

Points at fixed loffe time. For lower values of loffe time, lower momentum P_{z} (tagged by color) points don't scale.

$$
P_{z} \text { in } G e V, z \text { in } \mathrm{GeV}^{-1}
$$

$$
P \cdot z=\nu
$$

Off the light cone in a rotated frame

Going off the light cone due to transverse spatial separation.

$$
\begin{gathered}
\langle p| \bar{\psi}(0) \gamma^{\alpha} \mathcal{U} \psi(z)|p\rangle=M^{\alpha}\left((p z), z^{2}\right) \\
M^{\alpha}\left((p z), z^{2}\right)=2 p^{\alpha} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\alpha} \mathcal{M}_{z}\left((p z), z^{2}\right)
\end{gathered}
$$

If $z^{+}=0$,

$$
\langle p| \bar{\psi}(-z / 2) \gamma^{+} \mathcal{U} \psi(z / 2)|p\rangle=2 p^{+} \mathcal{M}\left((p z), z^{2}\right) \quad z=\left(0, z^{-}, \mathbf{z}_{\mathbf{T}}\right)
$$

The above is essentially the Fourier transform of a Transverse Momentum Dependent Distribution.

Off the light cone in a rotated frame

Off forward off the light cone

Going off forward introduces another vector $\Delta=p^{\prime}-p$

$$
\left\langle p^{\prime}\right| \bar{\psi}(-z / 2) \gamma^{\alpha} \mathcal{U} \psi(z / 2)|p\rangle=M^{\alpha}\left((\Delta z),(p z), z^{2}\right)
$$

$M^{\alpha}\left((\Delta z),(p z), z^{2}\right)=2 p^{\alpha} \mathcal{M}\left((p z), z^{2}\right)+2 z^{\alpha} \mathcal{M}_{z}\left((\Delta z),(p z), z^{2}\right)+2 \Delta^{\alpha} \mathcal{M}_{\Delta}\left((\Delta z),(p z), z^{2}\right)$

$$
(\Delta z)=\Delta^{+} z^{-}+\Delta^{-} z^{+}-\boldsymbol{\Delta}_{\mathbf{T}} \cdot \mathbf{z}_{\mathbf{T}}
$$

For an on the light cone GPD, for zero skewness or $\Delta^{+}=0,(\Delta z)=0$ irrespective of $\boldsymbol{\Delta}_{\mathbf{T}}$
For an off the light cone GPD in a rotated frame, if skewness is zero, $(\Delta z)=-\boldsymbol{\Delta}_{\mathbf{T}} \cdot \mathbf{z}_{\mathbf{T}}$
Effectively a mixing of skewness and transverse momentum transfer.

Off forward off the light cone

$\mathrm{Hu}\left(\mathrm{x}, \Delta_{\mathrm{T}}{ }^{2}, \mathrm{z}^{2}{ }^{2}, \mathrm{z}_{\mathrm{T}} \cdot \Delta_{\mathrm{T}}\right) \Delta_{\mathrm{T}}=1 \mathrm{GeV}$

$\mathrm{Hu}\left(\mathrm{x}, \Delta \mathrm{T}^{2}, \mathrm{zT}^{2}, \mathrm{zT} \cdot \Delta \mathrm{T}\right) \mathrm{zT} \cdot \Delta \mathrm{T}=0 \Delta \mathrm{~T}=1 \mathrm{GeV}$

Off forward off the light cone

The effect is higher for higher momentum transfer.

Reconstructing PDFs using lattice QCD moments

- Reconstruct the PDF in loffe time space using Mellin moments and Regge behavior.
- Inverse Fourier transform to obtain actual PDF.

$$
\begin{aligned}
\operatorname{Im} \mathcal{M}(\nu) & =\int_{0}^{1} d x f(x) \sin (x \nu)=M_{1} \nu-\frac{1}{3!} M_{3} \nu^{3}+\ldots \\
\operatorname{Re} \mathcal{M}(\nu) & =\int_{0}^{1} d x f(x) \cos (x \nu)=M_{0}-\frac{1}{2!} M_{2} \nu^{2}+\ldots
\end{aligned}
$$

$$
x^{-\alpha} \rightarrow \nu^{-\alpha+1}
$$

Reconstructing PDFs using lattice QCD moments

Reconstructing PDFs using lattice QCD moments

Large loffe time described mostly by Regge behavior.

Reconstructing PDFs using lattice QCD moments

Reconstructing PDFs using lattice QCD moments

gluons

State of the art in lattice calculations of Mellin moments

Can et al, QCDSF / UKQCD / CSSM, Phys. Rev. D 102 (2020)

Summary

- Both local and non local operators calculated on the lattice carry a wealth of information
- With more Mellin moments one covers more region in loffe time space.
- In the case of pseudo PDFs, this is achieved by boosting to higher and higher momentum.
- Limited range in loffe time makes it tricky to perform an inverse Fourier transform.
- Interesting effects of skewness and transverse momentum transfer for off forward distributions off the light cone.

