Gluon Spatial Distributions in the Nucleon

B. Kriesten

9th APS Group of Hadronic Physics

April 13, 2021

Fundamental Properties of the Nucleon and the QCD EMT

$$T_{QCD}^{\mu\nu} = \frac{1}{4} \,\overline{\psi} \,\gamma^{(\mu} D^{\nu)} \psi + Tr \left\{ F^{\mu\alpha} F^{\nu}_{\alpha} - \frac{1}{2} g^{\mu\nu} F^2 \right\}$$

Energy Density

Momentum Density

Pressure Distribution

Shear Forces

Energy Momentum Tensor Form Factors

$$\langle P'|T^{\mu\nu}_{q,g}|P\rangle = \overline{U}(P')[A_{q,g}(\Delta^2)\gamma^{(\mu}\overline{P}^{\nu)} + B_{q,g}(\Delta^2)\overline{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}/2M + C_{q,g}(\Delta^2)(\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2)/M + \overline{C}_{q,g}(\Delta^2)g^{\mu\nu}M]U(P)$$

X. Ji PRL. 78 (1997)

The matrix elements of the energy momentum tensor can be parameterized by **form factors** describing elastic scattering of a graviton off a proton.

Connection between Local Operators and GPDs

Image credit: Simonetta Liuti

Nature of Deeply Virtual Exclusive Processes

A **new era** for understanding and measuring the fundamental properties of nuclei by directly probing the quantum mechanical **phase space distributions** of the quarks and gluons.

Deeply Virtual Compton Scattering

B.Kriesten, S.Liuti, et. al. PRD. 101 (2020)

2

Gluon Transversity Observables in DVCS

Accessing the chiral-odd gluon structure of the nucleon

7

 $F_{UU}^{\cos 2\phi} = -2\frac{\alpha_S}{2\pi}\sqrt{1-\xi^2}\frac{t_0-t}{4M^2} \Re e \left|\sqrt{1-\xi^2} \left(\widetilde{\mathcal{H}}_T^g + (1-\xi)\frac{\mathcal{E}_T^g + \widetilde{\mathcal{E}}_T^g}{2}\right) \left(\mathcal{H} + \widetilde{\mathcal{H}} - \frac{\xi^2}{1-\xi^2}(\mathcal{E} + \widetilde{\mathcal{E}}\right)^*\right|$ $+\sqrt{1-\xi^2}\Big(\widetilde{\mathcal{H}}_T^g+(1+\xi)\frac{\mathcal{E}_T^g-\widetilde{\mathcal{E}}_T^g}{2}\Big)\Big(\mathcal{H}-\widetilde{\mathcal{H}}-\frac{\xi^2}{1-\xi^2}(\mathcal{E}+\widetilde{\mathcal{E}}\Big)^*$ $+\frac{\sqrt{t_0-t}}{2M}\Big(\widetilde{\mathcal{H}}_T^g+(1+\xi)\frac{\mathcal{E}_T^g-\widetilde{\mathcal{E}}_T^g}{2}\Big)\Big(\mathcal{E}+\xi\widetilde{\mathcal{E}}\Big)^*$ $-\sqrt{1-\xi^2}\Big(\mathcal{H}_T^g + \frac{t_0-t}{M^2}\widetilde{\mathcal{H}}_T^g - \frac{\xi^2}{1-\xi^2}\mathcal{E}_T^g + \frac{\xi}{1-\xi^2}\widetilde{\mathcal{E}}_T^g\Big)\Big(\mathcal{E}-\xi\widetilde{\mathcal{E}}\Big)^*\Big|$

Exclusive Measurements of Gluon Distributions

Exclusive electroproduction of vector mesons (such as the J/psi) probe the gluon content of nuclei.

EIC White Paper arXiv: 1212.1701

Gluon GPDs enter the vector meson production cross section.

Y. Guo, X. Ji, Y. Liu arXiv:2103.11506

$$\frac{d\sigma}{dt} \propto \left(1 - \frac{t}{4M^2}\right) E_2^2 - 2E_2(H_2 + E_2) + (1 - \xi^2)(H_2 + E_2)^2$$

$$E_2 = \int_0^1 dx E_g(x,\xi,t) \quad H_2 = \int_0^1 dx H_g(x,\xi,t)$$

Gluon distributions through scaling violations

$$rac{\partial F_2(x,Q^2)}{\partial \ln Q^2} = rac{lpha_S(Q^2)}{2\pi} \Big[P_{QQ} \otimes F_2 + 2e^2 P_{QG} \otimes xg(x) \Big]$$

A lever arm in Q2 hopefully allows us to use perturbative evolution to extract the gluon distribution through scaling violations.

EIC Yellow Report **arXiv: 2103.05419** EIC White Paper **arXiv: 1212.1701**

Flexible Gluon GPD Model

Allows us to calculate gluon angular momentum observables as they appear in experiment.

B. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti arXiv:2101.01826

General Framework

 $\phi_{\lambda_g \Lambda}^{\Lambda_X}(k,p) = \Gamma(k) \frac{U_{\Lambda_X}(p-k) U_{\Lambda}(p)}{k^2 - m_g^2} \not \epsilon_{\lambda_g}^*(k)$

 7 Fitted parameters and the initial scale for perturbative evolution.

Quark Parametrization PRD. 84 (2010), PRC 88 (2013)

Gluon GPD H(X,0,t)

Dipole fit of Lattice QCD calculated moments (P.E. Shanahan, W. Detmold **PRD 99, (2019)**) allows us to fit the the gluon GPD t-dependence.

Gluon GPD E(X,0,t)

Similarly, we use a dipole fit of Lattice QCD calculated moments (P.E. Shanahan, W. Detmold **PRD 99, (2019)**) to fit the gluon GPD t-dependence, but there is **much flexibility in this fit**.

Full Gluon GPD

Allows us to calculate **gluon observables** as they appear in experimental cross sections.

Momentum Space to Transverse Position Space

Probability density of finding a quark at transverse position b from the center of momentum as a function of quark and proton polarization.

M. Burkardt **PRD. 62 (2000)** M. Burkardt *Int.J.Mod.Phys.A* **18 (2003)** Transverse polarization shifts the unpolarized distribution proportional to the GPD E.

2+1 Dimensional Imaging in Impact Parameter Space

Gluon GPDs: B. Kriesten, P. Velie, E. Yeats, F.Y. Lopez, S. Liuti arXiv:2101.01826 Fourier Transforms: A. Rajan, B. Kriesten, S. Liuti (in progress)

Conclusions

- Gluon spatial distributions are the key to understanding the **fundamental properties of the nucleon** (spin, mass, pressure, etc.).
- An EIC will explore **new kinematic regimes** for femtography using a variety of exclusive processes to place constraints on the quark and gluon distributions.
- Model calculations are necessary for predicting the **size of gluon observables** particularly at an EIC.