

How does the proton/neutron get its mass and spin and how do we test this dynamics?

$$
\begin{array}{r}
\left\langle p^{\prime}, \Lambda\right| T^{\mu \nu}|p, \Lambda\rangle=A(t) \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\gamma^{\mu} P^{\nu}+\gamma^{\nu} P^{\mu}\right] U(p, \Lambda)+B(t) \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right) i \frac{\left.\sigma^{\mu(\nu} \Delta^{\nu}\right)}{2 M} U(p, \Lambda) \\
+C(t)\left[\Delta^{2} g^{\mu \nu}-\Delta^{\mu \nu}\right] \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right) U(p, \Lambda)^{\prime}+\widetilde{C}(t) g^{\mu \nu} \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right) U(p, \Lambda)
\end{array}
$$

Direct calculation of EMT form factors
Donoghue et al. PLB529 (2002), C. Corianò et al. PRD(2018), A. Freese, QCD Evolution 2019

(a)

(b)

(c)

(d)

(e)

Figure 2: Feynman diagrams for spin $1 / 2$ radiative corrections to $T_{\mu \nu}$.

EMT matrix elements from Generalized Parton Distributions Moments

GPD

- Large momentum transfer $\mathrm{Q}^{2} \gg \mathrm{M}^{2} \rightarrow$ "deep"
- Large Invariant Mass $W^{2} \gg M^{2} \rightarrow$ equivalent to an "inelastic" process

Physical interpretation of EMT form factors

$$
\begin{aligned}
& \frac{1}{2}\left(A_{q}+B_{q}\right)=J_{q}=\frac{1}{2}\left(A_{20}+B_{20}\right) \quad J_{q}^{i}=\int d^{3} r \epsilon^{i j k} r_{j} T_{0 k} \text { Angular Momentum } \\
& A_{q}=\left\langle x_{q}\right\rangle=A_{20} \\
& \text { Momentum } \\
& C_{q}=\text { Internal Forces }=C_{20} \\
& \int d^{3} r\left(r^{i} r^{j}-\delta^{i j} r^{2}\right) T_{i j}
\end{aligned}
$$

arXiv 2006.08636

Two types of Fourier conjugates

$$
\begin{aligned}
& b=\frac{b_{\text {in }}+b_{\text {out }}}{2} \\
& \Delta=p-p^{\prime}
\end{aligned}
$$

Longitudinal OAM definition through Wigner Distributions

Lorce, Pasquini,
Ji, Xiong, Yuan
Mukherjee,
Courtoy, Engelhardt, Rajan, SL

$$
\left\langle L_{z}\right\rangle=\lim _{\xi \rightarrow 0, \Delta_{T} \rightarrow 0} \int d x \int d^{2} k_{T}\left(i \varepsilon_{i j} \frac{\partial}{\partial \Delta_{i}} k_{j}\right) W_{(\Lambda=+)}\left(x, \xi, k_{T}^{2}, k_{T} \cdot \Delta_{T}, \Delta_{T}^{2}\right)
$$

- Lorce, Pasquini, Xiong,_uan
- Hatta, Yoshida
- Ji, Xiong, Yuan

$$
L_{q}=-\int_{0}^{1} d x \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}=-\int_{0}^{1} d x F_{14}^{(1)}
$$

$$
L_{q} \cdot S_{q}=-\int_{0}^{1} d x \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} G_{11}=-\int_{0}^{1} d x G_{11}^{(1)}
$$

> Lorentz Invariance Relations establish a connection between $\mathrm{k}_{\mathrm{T}}{ }^{2}$ moments of TMDs/GTMDs and twist 3 PDFs/GPDs

\checkmark Twist 3 GPD notation from Meissner, Metz and Schlegel, JHEP(2009)
\checkmark We confirm and corroborate the global/integrated OAM result deducible from Ji, Xiong, Yuan PRD88 (2013)

Generalized LIR for a staple link

LIR violating term

$$
0=\int \frac{d^{4} x}{(2 \pi)^{4}} e^{i k \cdot x}\langle P S| \bar{\psi}(0)[i D(0)-m] i \sigma^{i+} \gamma_{5} \psi(x)|P S\rangle
$$

How does this OAM fit into a sum rule?
Equations of Motion (EoM) relation

Longitudinal Angular Momentum Sum Rule

$$
J_{q}=L_{q}+\frac{1}{2} \Delta \Sigma_{q}
$$

- A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016)
- A. Rajan, M. Engelhardt, S.L., PRD (2018)

$$
0=\int \frac{d^{4} x}{(2 \pi)^{4}}{ }^{i k \cdot x}\langle P S| \bar{\psi}(0)[i D(0)-m] \sigma^{i+} \gamma_{5} \psi(x)|P S\rangle
$$

$$
-\frac{\Delta^{+}}{2} W_{\Lambda^{\prime} \Lambda}^{\gamma^{i} \gamma^{5}}+i k^{+} \epsilon^{i j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{j}}+\frac{\Delta^{i}}{2} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+} \gamma^{5}}-i \epsilon^{i j} k^{j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+}}+\mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, S}=0
$$

Longitudinal Angular Momentum Sum Rule
 $J_{q}=L_{q}+\frac{1}{2} \Delta \Sigma_{q}$

A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016)
A. Rajan, M. Engelhardt, S.L., PRD (2018)

$$
-\frac{\Delta^{+}}{2} W_{\Lambda^{\prime} \Lambda}^{\gamma^{i} \gamma^{5}}+i k^{+} \epsilon^{i j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{j}}+\frac{\Delta^{i}}{2} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+} \gamma^{5}}-i \epsilon^{i j} k^{j} W_{\Lambda^{\prime} \Lambda}^{\gamma^{+}}+\mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, S}=0
$$

New! From DVCS

DVCS (Ji, 97)
Polarized ep
$\mathrm{g}_{1}(\mathrm{x})$

Integrated in x

$$
=
$$

J
$-S+$
0

Transverse Angular Momentum Sum Rule

$$
J_{q}=L_{q}+\frac{1}{2} \Delta \Sigma_{q}
$$

A. Rajan, M. Engelhardt, SL, to be submitted

$$
\begin{gathered}
\frac{1}{2} \int d x x(H+E)-\frac{1}{2} \int d x \mathcal{M}_{T}=\int d x x\left(\widetilde{E}_{2 T}+H+E+\frac{H_{2 T}}{\xi}\right)+\frac{1}{2} \int d x g_{T}-\frac{1}{2} \int d x x \mathcal{A}_{T} \\
L_{T}
\end{gathered}
$$

Measuring Angular
 Momentum

graph from M. Defurne

- Beam Target Spin Correlation UL: unpolarized quark density in a longitudinally polarized proton

Kriesten et al., Phys.Rev.D 101 (2020)
Kriesten and SL, 2004.08890

A multi-step, multi-prong process that compares to imaging a black hole

Images courtesy of Kent Yagi, UVA

Event Horizon

 Telescope
Center for Femtography (CNF)

SURA

> December 2018 -- Founded at UVA meeting
$>$ Summer 2019 -- Pilot projects started funded by SURA
$>$ Summer 2020 -- Xiangdong Ji is appointed director

- CNF has funded multiple projects on Femtography through GPDs.
- Covering different areas
- Experimental data
- ML \& Al
- Inverse problems
- Lattice calculations
- ...
- Initial funding \$0.5M, per year
- Now it is time to organize different efforts into a larger collaboration, involving people outside VA.

CONCLUSIONS

- We presented an avenue to identify observables sensitive to both longitudinal and transverse OAM
- Jefferson Lab @12 GeV and EIC will make history as the we uncover the mechanical properties the of the proton and observe its spatial images
- To observe, evaluate and interpret GPDs and Wigner distributions at the subatomic level requires stepping up data analyses from the standard methods and developing new numerical/analytic/quantum computing methods

Center for Nuclear Femtography!

