First lattice QCD study of proton twist-3 GPDs

Martha Constantinou

In collaboration with:

S. Bhattacharya¹, K. Cichy², J. Dodson¹, A. Metz¹, A. Scapellato¹, F. Steffens³

1. Temple University, 2. Adam Mickiewicz University, 3. University of Bonn

9th Workshop APS Topical Group on Hadronic Physics (GHP)

April 13, 2021

Why GPDs?

 GPDs provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
 [M. Burkardt, Phys.Rev.D62 071503 (2000), hep-ph/0005108]
 [M. V. Polyakov, Phys. Lett. B555 (2003) 57, hep-ph/0210165]

 Experimentally accessed in DVCS and DVMP
 [X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249] (Halls A,B,C (JLab), PHENIX, STAR, HERMES, COMPASS, GSI, BELLE, J-PARC)

★ Experimentally, GPDs are not well-constrained:

- independent measurements to disentangle GPDs
- Iimited coverage of kinematic region
- data on certain GPDs
- indirectly related to GPDs through the Compton FFs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)

Why twist-3 GPDs?

Why twist-3 GPDs?

Higher-twist distributions:

- ★ Lack density interpretation, but can be sizable
- ★ Sensitive to soft dynamics
- ★ challenging to probe experimentally and isolate from leading-twist

[Defurne et al., PRL 117, 26 (2016); Defurne et al., Nature Commun. 8, 1 (2017)]

Why twist-3 GPDs?

Higher-twist distributions:

- ★ Lack density interpretation, but can be sizable
- ★ Sensitive to soft dynamics
- \star challenging to probe experimentally and isolate from leading-twist

[Defurne et al., PRL 117, 26 (2016); Defurne et al., Nature Commun. 8, 1 (2017)]

- ★ Needed for proton tomography
- **Related to certain spin-orbit correlations** [C. Lorce, PLB 735 (2014) 344, arXiv:1401.7784]
- **★** Estimation on power corrections in hard exclusive processes (DVCS)
- ★ $[\widetilde{H} + \widetilde{G}_2](x, \xi, t)$ related to tomography of F_⊥ acting on the active q in DIS off a transversely polarized N right after the virtual photon absorbing

[M. Burkardt, PRD 88 (2013) 114502, arXiv:0810.3589]

•
$$G_2(x,\xi,t)$$
 related to L_q : $L_q = -\int_{-1}^1 dx \, x \, G_2^q(x,\xi,t=0)$

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249], [M. Penttinen et al., PLB 491 (2000) 96, arXiv:hep-ph/0006321]

Results on twist-2 GPDs

★ Unpolarized ($H(x, \xi, t), E(x, \xi, t)$) and helicity ($H(x, \xi, t), E(x, \xi, t)$) GPDs for zero and nonzero skewness

[C. Alexandrou et al. (ETMC), PRL 125 (2020) 26, 262001, arXiv:2008.10573]

Results on twist-3 PDFs

+ Helicity flip $(g_T(x))$ and transversity $(h_L(x))$ twist-3 PDFs

PRD Editors' Suggestion Highlight

[S. Bhattacharya et al., PRD 102 (2020) 11, arXiv:2004.04130]

Results on twist-3 PDFs

★ Helicity flip $(g_T(x))$ and transversity $(h_L(x))$ twist-3 PDFs

PRD Editors' Suggestion Highlight

[S. Bhattacharya et al., PRD 102 (2020) 11, arXiv:2004.04130]

See talks by:

'זנ'

- S. Bhattacharya: Tue @ 4:50 pm (on matching)
- A. Scapellato: Tue @ 5:10 pm (on lattice results)

Twist-3 GPDs from lattice QCD (quasi-distributions method)

Useful Reviews:

[K. Cichy, M. Constantinou, Advances in HEP, Volume 2019, Article ID 3036904, arXiv:1811.07248]
[X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543]
[M. Constantinou (invited review) Eur. Phys. J. A 57 (2021) 2, 77, arXiv:2010.02445]

Relies on Large Momentum Effective Theory (LaMET) to reconstruct GPDs [X. Ji, Phys. Rev. Lett. 110 (2013) 262002; X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014)]

Relies on Large Momentum Effective Theory (LaMET) to reconstruct GPDs [X. Ji, Phys. Rev. Lett. 110 (2013) 262002; X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014)]

 $\bigstar \text{ Matrix elements of spatial operators with fast moving hadrons} \\ \tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \quad \langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathscr{W}(z,0) \Psi(0) \, | \, N(P_i) \rangle_{\mu} \\ & \zeta = \frac{Q_3}{2P_3} \end{cases}$

 $N(\overrightarrow{P}_{i}, t_{s})$

W(z)

 $N(\overrightarrow{P}_{f},0)$

Relies on Large Momentum Effective Theory (LaMET) to reconstruct GPDs [X. Ji, Phys. Rev. Lett. 110 (2013) 262002; X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014)]

 $\bigstar \text{ Matrix elements of spatial operators with fast moving hadrons} \qquad \qquad \Delta = P_f - t_f = 0$ $\tilde{q}_{\Gamma}^{\text{GPD}}(x, t, \xi, P_3, \mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \quad \langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z, 0) \, \Psi(0) \, | \, N(P_i) \rangle_{\mu} \qquad \qquad \xi = \frac{Q_3}{2P_3}$

Variables:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (ξ)

 $N(\overrightarrow{P}_i, t_s)$

W(z)

 $N(\overrightarrow{P}_{f},0)$

Relies on Large Momentum Effective Theory (LaMET) to reconstruct GPDs [X. Ji, Phys. Rev. Lett. 110 (2013) 262002; X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014)]

Relies on Large Momentum Effective Theory (LaMET) to reconstruct GPDs
 [X. Ji, Phys. Rev. Lett. 110 (2013) 262002; X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014)]

★ Challenges of calculation:

- Increased statistical uncertainties due to momentum transfer
- Need for multiple matrix elements to disentangle GPDs
- Frame dependence
- Matching for nonzero skewness

$$C^{2pt} = \langle N | N \rangle \qquad C^{3pt} = \langle N | \overline{\psi}(z) \Gamma \mathscr{A}(z,0) \psi(0) | N \rangle$$

$$R_{\Gamma}(\mathcal{P}_{\kappa},\mathbf{P_{f}},\mathbf{P_{i}};t,\tau) = \frac{C_{\Gamma}^{3pt}(\mathcal{P}_{\kappa},\mathbf{P_{f}},\mathbf{P_{i}};t,\tau)}{C^{2pt}(\mathcal{P}_{0},\mathbf{P_{f}};t)} \times \sqrt{\frac{C^{2pt}(\mathcal{P}_{0},\mathbf{P_{i}};t-\tau)C^{2pt}(\mathcal{P}_{0},\mathbf{P_{f}};\tau)C^{2pt}(\mathcal{P}_{0},\mathbf{P_{f}};t)}{C^{2pt}(\mathcal{P}_{0},\mathbf{P_{f}};t-\tau)C^{2pt}(\mathcal{P}_{0},\mathbf{P_{i}};\tau)C^{2pt}(\mathcal{P}_{0},\mathbf{P_{i}};t)}} \xrightarrow{t-\tau \gg a} h_{\mathcal{O},\mathcal{P}}(z,t,\xi,P_{3})$$

 $h^{R}_{\mathcal{O},\mathcal{P}}(z,t,\xi,P_{3},\mu) = Z_{\mathcal{O}}(z,\mu) h_{\mathcal{O},\mathcal{P}}(z,t,\xi,P_{3})$

[M. Constantinou, H. Panagopoulos, Phys. Rev. D96, 054506 (2017), arXiv:1705.11193]

$$\widetilde{F}^{\mu} = P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E}$$
$$+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} (\widetilde{E} + \widetilde{G}_{1}) + \widetilde{h}^{\mu}_{\perp} (\widetilde{H} + \widetilde{G}_{2}) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4}$$

$$G_i(x, t, \xi, \mu, P_3) = \int \frac{dz}{4\pi} e^{-ixP_3 z} F_{G_i}(z, P_3, t, \xi, \mu)$$

In this work: Backus-Gilbert

In this work: $\xi=0$ (matching of gT)

S. Bhattacharya: Tue @ 4:50 pm

Parameters of calculation (u-d flavor combination)

★ Nf=2+1+1 twisted mass fermions & clover term

Ensemble parameters:

][

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

★ Kinematical setup:

P_3 [GeV]	$ec{Q} imes rac{L}{2\pi}$	$-t \; [\mathrm{GeV}^2]$	ξ	$N_{\rm meas}$
0.83	$(2,\!0,\!0)$	0.69	0	4288
1.25	$(2,\!0,\!0)$	0.69	0	4288
1.25	(2,2,0)	1.39	0	4288
1.67	$(2,\!0,\!0)$	0.69	0	4288

\star Excited states: T_{sink} ~1 fm

Parameters of calculation (u-d flavor combination)

★ Nf=2+1+1 twisted mass fermions & clover term

Ensemble parameters:

][

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

★ Kinematical setup:

P_3 [GeV]	$\vec{Q} \times \frac{L}{2\pi}$	$-t \; [\text{GeV}^2] \; \xi$	$N_{\rm meas}$
0.83	(2,0,0)	0.69 0	4288
1.25	$(2,\!0,\!0)$	0.69 0	4288
1.25	(2,2,0)	1.39 0	4288
1.67	(2,0,0)	0.69 0	4288

★ Excited states: T_{sink} ~1 fm

We utilize

 $\gamma^j \gamma^5$, j = 1,2

 $\pm P_3$

 $\pm \vec{Q}$

Transverse matrix element of axial operator (proton boost: $\vec{P} = (0,0,P_3)$)

★ Transverse matrix element of axial operator (proton boost: $\overrightarrow{P} = (0,0,P_3)$)

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Transverse matrix element of axial operator (proton boost: $\vec{P} = (0,0,P_3)$)

$$\widetilde{F}^{\mu} = P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E}$$

$$h^{\mu} = \overline{u}(p') \gamma^{\mu} u(p), \qquad e^{\mu} = \overline{u}(p') \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m} u(p), \qquad b = \overline{u}(p') u(p),$$

$$\widetilde{h}^{\mu} = \overline{u}(p') \gamma^{\mu}\gamma_{5} u(p), \qquad \widetilde{e}^{\mu} = \frac{\Delta^{\mu}}{2m} \widetilde{b}, \qquad \qquad \widetilde{b} = \overline{u}(p') \gamma_{5} u(p)$$

$$+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} (\widetilde{E} + \widetilde{G}_{1}) + \widetilde{h}^{\mu}_{\perp} (\widetilde{H} + \widetilde{G}_{2}) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \qquad \qquad \mu = 1, 2$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Sum Rules (generalization of Burkhardt-Cottingham)

$$\int_{-1}^{1} dx \,\widetilde{H}(x,\xi,t) = G_A(t), \qquad \qquad \int_{-1}^{1} dx \,\widetilde{E}(x,\xi,t) = G_P(t), \qquad \qquad \int_{-1}^{1} dx \,\widetilde{G}_i(x,\xi,t) = 0$$

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

Transverse matrix element of axial operator (proton boost: $\overrightarrow{P} = (0,0,P_3)$)

$$\begin{split} \widetilde{F}^{\mu} &= P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E} \\ &+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} \left(\widetilde{E} + \widetilde{G}_{1} \right) + \widetilde{h}^{\mu}_{\perp} \left(\widetilde{H} + \widetilde{G}_{2} \right) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \end{split} \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') v_{5} u(p)$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Sum Rules (generalization of Burkhardt-Cottingham) $\int_{-1}^{1} dx \,\widetilde{H}(x,\xi,t) = G_A(t), \qquad \qquad \int_{-1}^{1} dx \,\widetilde{E}(x,\xi,t) = G_P(t), \qquad \qquad \int_{-1}^{1} dx \,\widetilde{G}_i(x,\xi,t) = 0$ [X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

Sum Rules (generalization of Efremov-Leader-Teryaev)

[A. Efremov, O. Teryaev, E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

$$\int_{-1}^{1} dx \, x \, \widetilde{G}_{1}(x,\xi,t) = \frac{1}{2} \left[F_{2}(t) + \left(\xi \frac{\partial}{\partial \xi} - 1\right) \int_{-1}^{1} dx \, x \, \widetilde{E}(x,\xi,t) \right], \qquad \int_{-1}^{1} dx \, x \, \widetilde{G}_{2}(x,\xi,t) = \frac{1}{2} \left[\xi^{2} G_{E}(t) - \frac{t}{4m^{2}} F_{2}(t) - \widetilde{A}_{20}(t) \right],$$
$$\int_{-1}^{1} dx \, x \, \widetilde{G}_{3}(x,\xi,t) = \frac{\xi}{4} G_{E}(t), \qquad \int_{-1}^{1} dx \, x \, \widetilde{G}_{4}(x,\xi,t) = \frac{1}{4} G_{E}(t) \qquad \qquad \boxed{F_{2}: \text{Pauli FF}_{G_{E}}: \text{electric FF}}$$

Decomposition of matrix elements

Decomposition in Minkowski space [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

$$\begin{split} \widetilde{F}^{\mu} &= P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E} \\ &+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} \left(\widetilde{E} + \widetilde{G}_{1} \right) + \widetilde{h}^{\mu}_{\perp} \left(\widetilde{H} + \widetilde{G}_{2} \right) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \end{split} h^{+} \widetilde{G}_{4} \end{split}$$

Decomposition of matrix elements

Decomposition in Minkowski space [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

$$\begin{split} \widetilde{F}^{\mu} &= P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E} \\ &+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} \left(\widetilde{E} + \widetilde{G}_{1} \right) + \widetilde{h}^{\mu}_{\perp} \left(\widetilde{H} + \widetilde{G}_{2} \right) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \end{split}$$

- Kinematic factors defined by calculation setup
- All twist-3 helicity GPDs: 4 x computational cost compared to PDFs !

Decomposition of matrix elements

Decomposition in Minkowski space [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

$$\begin{split} \widetilde{F}^{\mu} &= P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E} \\ &+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} \left(\widetilde{E} + \widetilde{G}_{1} \right) + \widetilde{h}^{\mu}_{\perp} \left(\widetilde{H} + \widetilde{G}_{2} \right) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \end{split}$$

- Kinematic factors defined by calculation setup
- All twist-3 helicity GPDs: 4 x computational cost compared to PDFs !
- For $\overrightarrow{Q} = (Q_x, 0, 0)$ the following matrix elements contribute
 - $\Pi(\gamma^2\gamma^5,\Gamma_0):\widetilde{H}+\widetilde{G}_2, \quad \widetilde{G}_4$
 - $\Pi(\gamma^2\gamma^5,\Gamma_2):\widetilde{H}+\widetilde{G}_2, \quad \widetilde{G}_4$
 - $\Pi(\gamma^1\gamma^5,\Gamma_1):\widetilde{H}+\widetilde{G}_2, \quad \widetilde{E}+\widetilde{G}_1$
 - $\Pi(\gamma^1\gamma^5,\Gamma_3):\widetilde{G}_3$

Parity projectors

 $\Gamma_0 = \frac{1}{4}(1 + \gamma^0)$

 $\Gamma_i = \frac{1}{4} (1 + \gamma^0) \gamma^5 \gamma^i$

Bare matrix elements (ME)

Bare matrix elements (ME)

- $\bigstar \Pi(\gamma^2 \gamma^5, \Gamma_0) \& \Pi(\gamma^2 \gamma^5, \Gamma_2):$ disentangle $\widetilde{H} + \widetilde{G}_2, \ \widetilde{G}_4$
- $\bigstar \quad \Pi(\gamma^1 \gamma^5, \Gamma_1) \text{ and } \widetilde{H} + \widetilde{G}_2:$ disentangle $\widetilde{E} + \widetilde{G}_1$
- $\bigstar \Pi(\gamma^1\gamma^5,\Gamma_3)$ gives \widetilde{G}_3

- ★ Real part of ME: dominant
- \bigstar \widetilde{G}_3 is kinematically suppressed

Matrix elements decomposition

Matrix elements decomposition

Т

T

Concluding Remarks

Concluding Remarks

- **GPDs multi-dimensionality poses computational challenges**
- ★ At twist-3 there are 2-parton correlations, as well as 3-parton correlations, such as quark-gluon-quark (qgq)
 - Oth moments of twist-3 GPDs is zero [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 - 1st moments of twist-3 GPDs have zero qgq contribution
 - alternative matching proposed in Braun, Ji, Vladimirov, arXiv: 2103.12105
- **★** Extraction of twist-3 GPDs is promising with several interesting investigations (WW-approximation, sum rules)
- **★** Nonzero skewness of particular interest: twist-3 GPDs (in models) exhibit discontinuities at $x = \pm \xi$

Concluding Remarks

- **GPDs multi-dimensionality poses computational challenges**
- ★ At twist-3 there are 2-parton correlations, as well as 3-parton correlations, such as quark-gluon-quark (qgq)
 - Oth moments of twist-3 GPDs is zero [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 - 1st moments of twist-3 GPDs have zero qgq contribution
 - alternative matching proposed in Braun, Ji, Vladimirov, arXiv: 2103.12105
- **★** Extraction of twist-3 GPDs is promising with several interesting investigations (WW-approximation, sum rules)
- **★** Nonzero skewness of particular interest: twist-3 GPDs (in models) exhibit discontinuities at $x = \pm \xi$

DOE Early Career Award (NP) Grant No. DE-SC0020405

TMD Topical Collab.