Pion valence structure and form-factors from lattice QCD at physical point

Xiang Gao BNL & THU

9th Workshop of the APS Topical Group on Hadronic Physics

Pion valence quark PDF

Pion play a central role in the study of the strong interactions.

$$m_{\pi} \approx 140 \text{ MeV} \xrightarrow{\text{chiral limit}}{m_{q}=0} 0$$

- Critical ingredient for understanding the dynamical chiral symmetry breaking in QCD.
- Quarks and gluons in massless NG bosons.
- ...

3

Quasi PDF: • X. Ji, PRL 110 (2013); SCPMA57 (2014);

$$\tilde{q}(x) \equiv \int \frac{dz}{4\pi} e^{-ixP_z z} \langle P | \tilde{O}_{\Gamma}(z,\epsilon) | P \rangle,$$

$$\tilde{O}_{\Gamma}(z,\epsilon) = \overline{\psi}(0) \Gamma W_{\hat{z}}(0,z) \psi(z)$$

Equal-time correlators and QCD factorization

Short distance Factorization in coordinate space:

- V. Braun et al., EPJC 55 (2008)
- A. V. Radyushkin, PRD 96 (2017)
- Y. Ma et al., PRL 120 (2018)
- T. Izubuchi et al., PRD 98 (2018)

Ratio scheme renormalization:

$$\mathcal{M}(z, P_z, P_z^0) = \frac{\langle P_z | \tilde{O}_{\Gamma}(z, a) | P_z \rangle}{\langle P_z^0 | \tilde{O}_{\Gamma}(z, a) | P_z^0 \rangle}$$

$$\tilde{O}_{\Gamma}(z,\mu) = Z_{\psi,z} e^{\delta m|z|} \tilde{O}$$

Hadron state independent

Pion valence quark PDF: NLO results

Boosted pion state on the lattice

4

Moments of pion valence quark PDF

Pion valence quark PDF

Improvement:

- Matching formula beyond one-loop. •
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.

Pion valence quark PDF: NNLO 5

Improvement:

- Matching formula beyond one-loop.
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.

• NNLO matching

• Li, Ma and Qiu, PRL 126 (2021)

$$C_n(z^2\mu^2) = 1 + \alpha_s(\mu)C_n^{(1)}(z^2\mu^2) + \alpha_s^2(\mu)C_n^{(2)}(z^2\mu^2) + \mathcal{O}(\alpha)$$

$$= 1 + \frac{\alpha_s(\mu)C_F}{2\pi} \left[\left(\frac{3+2n}{2+3n+n^2} + 2H_n \right) \ln(z_0^2 \mu^2) + \dots \right] + z_0^2 = z^2$$

When $\ln(z_0^2 \mu^2)$ become large, one may need to include the **DGLAP** evolution:

$$\left[\frac{\partial}{\partial \ln \mu^2} + \beta(\alpha_s(\mu))\frac{\partial}{\partial \alpha_s} - \gamma_n\right]C_n^{evo} = 0$$

- A. V. Radyushkin, PLB 781 (2018)
- BNL, ANL, arXiv: 2102.01101

- Clear z₀ dependence can be observed at LO.
- Moments evolved from $1/z_0$ to μ from NNLO are consistent with **NLO** with current statistics but more flat, and agree with the **DGLAP** improved case.

Pion valence quark PDF: Improvement 6

Improvement:

- Matching formula beyond one-loop.
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.

• Physical pion mass

Ratio scheme renormalized matrix elements

• Chiral fermion

Pion valence quark PDF: Moments

matching coefficients.

• To stabilize the fit and extract higher moments, we perform **combine analysis** with data in range $[3a, z_{max}]$ using **NNLO**

Pion valence quark PDF: Moments

8

Moments: NNLO matching, physical point, chiral fermion

- The mass dependence is mild for pion valence PDF.
- spacings.

Chiral fermion shows good agreement with Wilson-Clover + HISQ fermion with fine lattice

9

Pion valence quark PDF

Preliminary results of the large-x behavior from model $x^{\alpha}(1-x)^{\beta}(1+t\sqrt{x}+sx)$:

$$\beta = 1.07(37)(29),$$

which shows good agreement with JAM18, xFitter.

More improvement:

- Resummation in perturbative matching. For example, NLO+NLL threshold resummation (BNL, ANL 21 arXiv: 2102.01101).
- More statistics and large momentum to extract higher moments.

Pion form factor and charge radius 10

 $(p_1 + p_2)^{\mu} F_{\pi}(Q^2)$

Pion elastic electromagnetic form factor $F_{\pi}(Q^2)$

- The 3-D generalized PDFs (GPDs) combine the information contained in **PDFs** and **form** factors.
- The mean charge radius is related to form factors at low Q^2 .
- EIC facility will allow higher Q^2 up to 30 GeV^2 , make contact with pQCD.

Pion form factor and charge radius 11

$$r_{\pi}^2 = -6 \frac{dF_{\pi}(Q^2)}{dQ^2}|_{Q^2=0}$$

$$\frac{1}{2}, t = -Q^2$$

- We studied pion valence quark PDF with multiple lattices and pion mass.
- The mass dependence of pion valence PDF is mild.
- The usage of Wilson-Clover fermion didn't bring trouble to the determination of pion valence structure.
- We calculate the pion electromagnetic form factors which show good agreement with experimental data.

Summary

