Concepts and misconceptions about the proton mass sum rule

Xiangdong Ji

2021 GHP meeting, April 16

What is a proton mass?

• Mass is the energy in the rest frame.

 $M = E_0/c^2$

Other ways of defining are either equivalent or unacceptable.

This is how lattice QCD calculates mass!

 $M = \frac{\langle \vec{p}=0 | \hat{H}_{QCD} | \vec{p}=0 \rangle}{\langle \vec{p}=0 | \vec{p}=0 \rangle}$

Scalar and tensor mass

• Since H is proportional to T^{00} , and the energymomentum tensor (EMT) which can

in general be *uniquely* decomposed as

$$T^{\alpha\beta}(x) = \bar{T}^{\alpha\beta}(x) + \hat{T}^{\alpha\beta}(x) ,$$

with

$$\hat{T}^{\alpha\beta}(x) \equiv \frac{1}{4}g^{\alpha\beta}T^{\rho}_{\rho}(x)$$
.

- Mass can be decomposed into scalar and tensor parts $M = M_T + M_S$
- Virial theorem: $M_T = 3 M_S$ 3: space dimension

QCD energies in the nucleon

Four different types (X. Ji, PRL, 1995)

 $H_{\rm QCD} = H_q + H_m + H_g + H_a$.

Quantum anomalous energy (QAE)

- Is similar to the MIT bag model constant and dark energy in Cosmology (Ji, 1995, K.F. Liu, 2021)
- Is at the origin of the proton mass (Ji & Y. Liu, 2021)
- Can measured in threshold heavy quarkonium production (D. Kharzeev, 1996)
- Has been recently calculated in lattice QCD (Y. B. Yang et al, 2021)
- Can also be related to the momentum fractions carried by partons (Ji, 2021)

VIEW & PERSPECTIVE

Proton mass decomposition: Naturalness and interpretations

Xiangdong Ji

Center for Nuclear Femtography, SURA, 1201 New York Ave. NW, Washington, DC 20005, USA Department of Physics, University of Maryland, College Park, MD 20742, USA E-mail: xji@umd.edu

discuss the scope and naturalness of the proton mass decomposition (or sum rule) published in *phys. Rev. Lett.* 74, 1071 (1995) and answer a few criticisms that appeared recently in the literature, focusing particularly on its interpretation and the quantum anomalous energy contribution. I comment on the so-called frame-independent or invariant-mass decomposition from the trace of the energy-momentum tensor. I stress the importance of measuring the quantum anomalous energy through experiments. Finally, I point out a large discrepancy in the scalar radius of the nucleon extracted from vector-meson productions and lattice QCD calculations. physical quantity which can be calculated on the lattice and ultimately be determined experimentally. Following and expanding the arguments given in Ref. [1], I will stress that the answer is affirmative. In doing so I will discuss in detail alternative proposals and will explain why I do not think that they are helpful to better understand the relevant physics.

In Section 2, I review the original derivation, emphasizing the key point that mass is the rest energy and there exists a complete energy basis to express the mass in QCD. In Section 3, I discuss why there is a quantum anomalous energy contribution and comment on its natural appearance in QCD Hamiltonian through time dilatation. In Section 4, I consider a well-known relation involving the matrix element of the trace of the QCD energy-momentum tensor, arguing it is not a natural frame-independent mass decomposition, but rather about scale symmetry breaking effects. In Section 5, I discuss the so-called "pressure contribution" to the mass sum rule and argue that it is based on a questionable picture. Consideration of such an effect contradicts the well-known concept of the quark mass con-

Frame-independent mass?

• Frame-independence

$$M^{2} = E_{P}^{2} - \vec{P}^{2} = \left(M + \frac{P^{2}}{2M} + \cdots\right)^{2} - P^{2}$$

checking the relativity is obeyed and boosted nucleon can be well created on lattice.

 But it does not provide any additional insight about the mass itself!

A frame independent mass decomposition?

Mass relation

$$2M^2 = \left\langle P \left| (1 + \gamma_m) m \bar{\psi} \psi + \frac{\beta(g)}{2g} F^2 \right| P \right\rangle$$

 M^2 = quark + gluon contributions

- Why $m\bar{\psi}\psi$, F² are related to mass-squared?
- A correct way to look at this

$$M = \left\langle P \left| (1 + \gamma_m) m \overline{\psi} \psi + \frac{\beta}{2g} F^2 \right| P \right\rangle / 2M$$

scalar part of the Hamiltonian!
= 4 × M_s (rest frame)

Boosting mass components

• Frame-independent mass

$$M = \langle \gamma (H - \vec{\beta} \cdot \vec{P}) \rangle \ ,$$

• When H and P are separated into different pieces

$$M = \langle \gamma (H_q - \vec{\beta} \cdot \vec{P_q}) \rangle + \langle \gamma (H_g - \vec{\beta} \cdot \vec{P_g}) \rangle + \gamma \langle H_a \rangle$$

Individual contributions are frame independent!

$$\langle \gamma(H_q - \vec{\beta} \cdot \vec{P_q}) \rangle = \langle x \rangle_q M \left[\gamma(\gamma - 1/(4\gamma)) - \gamma^2 \beta^2 \right]$$

$$= \frac{3}{4} \langle x \rangle_q M$$
(

Gluon contributions to mass

• There are two terms:

 $\frac{1}{2}(E^2 + B^2)$ as defined from traceless part of the gluon EMT β π^2

- $\frac{\beta}{8g}F^2$ anomaly contribution
- They can be mixed under renormalization in certain Lorentz-symmetry-breaking renormalization scheme, like in DIM-REG, O(d-1,1) is not O(3,1)
- Due to anomaly, order ε mixing will generate a finite term: the 2nd order tensor is mixed with scalar!

Mass decomposition using GFF separation of mass

• Quark and gluon part of gravitational form factors

$$\left\langle P' \left| T_{q,g}^{\mu\nu} \right| P \right\rangle = \bar{u} \left(P' \right) \left[A_{q,g}(t) \gamma^{(\mu} \bar{P}^{\nu)} + B_{q,g}(t) \frac{\bar{P}^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}}{2M_N} \right. \\ \left. + C_{q,g}(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{M_N} + \bar{C}_{q,g}(t) M_N g^{\mu\nu} \right] u(P) \, .$$

Then T^{00} matrix element is related A & \overline{C} (ji96)

 Decomposition of mass into quark and gluon contributions

$$M = M_q + M_g$$

$$M_q = A_q + \overline{C}_q; \quad M_g = A_g + \overline{C}_g$$

Splitting the scalar contribution

- One needs to split the scale-independent scalar contribution into quark's and gluon's $\langle P | (1 + \gamma_m) m \bar{\psi} \psi + (\beta/2g) F^2 | P \rangle$
- Such a separation is most natural in terms of the above, with both terms nearly scale-independent
- Separation in terms of EMT in the literature is highly scheme-dependent! Even in DIM-REG, it depends on the detailed procedure.
- The value of the scheme-dependent splitting for scalar contribution is limited.

There is no pressure effect in mass decomposition

 It has been claimed separating the energy operator into trace and traceless part will introduce the pressure effects!

$$T^{00} = \frac{1}{4} \left(3T^{00} + T^{ii} \right) + \frac{1}{4} \left(T^{00} - T^{ii} \right)$$

• Not a problem: $T^{\mu\nu} = \bar{\psi}\gamma^{\mu}iD^{\nu}\psi.$

the pressure $T^{ii} = \psi^+ \alpha \cdot D\psi$ which is part of the Hamiltonian

$$H = \psi^{\dagger} (i\vec{\alpha} \cdot \vec{D} + m\beta)\psi ,$$

Mass or scalar radius

• Form factors

$$\langle P' | T^{\mu\nu} | P \rangle = \bar{u} \left(P' \right) \left[A \left(Q^2 \right) \gamma^{(\mu} \bar{P}^{\nu)} + B \left(Q^2 \right) \bar{P}^{(\mu} i \sigma^{\nu)\alpha} q_{\alpha} / 2M + C \left(Q^2 \right) \left(q^{\mu} q^{\nu} - g^{\mu\nu} q^2 \right) / M \right] u(P) ,$$

Scalar and mass radius

$$\langle r^2 \rangle_{s,m} = -6 \frac{dG_{s,m}(Q^2)/M}{dQ^2} , \qquad \langle r^2 \rangle_s - \langle r^2 \rangle_m = -12 \frac{C(0)}{M^2} ,$$

$$\langle r^2 \rangle_s = -6 \frac{dA(Q^2)}{dQ^2} - 18 \frac{C(0)}{M^2} ,$$

$$\langle r^2 \rangle_m = -6 \frac{dA(Q^2)}{dQ^2} - 6 \frac{C(0)}{M^2} ,$$

Conclusion

- Much confusions exist in the literature about the proton mass.
- More papers and ideas but less discussions
- Hope things will improve after COVID-19