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Proton Charge Radius Puzzle in 2018
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ep Elastic Scattering
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• Elastic ep scattering, in the limit of Born approximation (one 
photon exchange):

• Structure-less proton:

• GE and GM can be extracted using Rosenbluth
separation

• For PRad, cross section dominated by GE

Taylor expansion of GE at low Q2

Derivative at low Q2 limit 
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PRad Experiment Overview
• PRad goal: Measuring proton charge radius using ep elastic scattering
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• Covers two orders of magnitude in low Q2 

with the same detector setting
Ø ~2x10-4 - 6x10-2 GeV2

• Unprecedented low Q2 (~2x10-4 GeV2)
Ø Fill in very low Q2 region

• Normalize to the simultaneously measured 
Møller scattering process 
Ø best known control of systematics

• Windowless H2 gas flow target removes 
major background source

• Extract the radius with precision from sub-
percent cross section measurement
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PRad Experimental Apparatus
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Major Steps in Analysis

Calibration Event 
Selection

Background 
Subtraction

Getting ep/ee
Ratio

Radiative 
Correction

Elastic ep
cross section

Proton Electric 
Form Factor

Fitting for the 
Radius
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Analysis – Event Selection
Event selection method

1. For all events, require hit 
matching between GEMs and 
HyCal

2. For ep and ee events, apply 
angle dependent energy cut 
based on kinematics
1. Cut size depend on local 

detector resolution 

3. For ee, requiring double-arm 
events, apply additional cuts
1. Elasticity
2. Co-planarity
3. Vertex z
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Analysis – Background Subtraction (2.2 GeV)
• ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam 

halo blocker), less than 2% otherwise
• ee background rate ~ 0.8% at all angles 

Residual hydrogen gas: hydrogen gas filled during background runs

2.2 GeV ep
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Analysis – Background Subtraction (2.2 GeV)
• ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam 

halo blocker), less than 2% otherwise
• ee background rate ~ 0.8% at all angles 

Residual hydrogen gas: hydrogen gas filled during background runs
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Analysis – Inelastic ep Contribution
• Using Christy 2018 empirical fit to study inelastic ep contribution
• Good agreement between data and simulation
• Negligible for the PbWO4 region (<3.5o), less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the 

Lead glass region
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M. E. Christy and P. E. Bosted, PRC 81, 055213 (2010)
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Extraction of ep Elastic Scattering Cross Section
• To reduce the systematic uncertainty, the ep cross section is normalized to the 

Møller cross section: 

• Method 1: bin by bin method – taking ep/ee counts from the same angle bin
Ø Cancellation of energy independent part of the efficiency and acceptance
Ø Limited converge due to double arm Møller acceptance

• Method 2: integrated Moller method – integrate Møller in a fixed angle range 
and use it as common normalization for all angle bins

• Luminosity cancelled from both methods

i
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Radiative Correction
• Radiative effects corrected by Monte-Carlo method:

1. Geant4 simulation package with full geometry setup

2. event generators with complete calculations of radiative corrections1,2, include emission of 
radiative photons

3. Consistent results between generators

4. Include TPE effect3, less than 0.2% for ep in PRad kinematic range

5. Iterative procedure applied for radiative correction 

1. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (fully beyond ultra relativistic approximation)
2. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001 3. O. Tomalak, Few Body Syst. 59, no. 5, 87 (2018)
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Systematic Uncertainties

• For PRad, systematic uncertainties may come from:
1. Event selection (elasticity cuts, co-planarity cuts…)
2. Radiative correction
3. Detector efficiencies (GEM and HyCal)
4. Beam-line background (Halo hitting collimator, residual gas…)
5. HyCal energy calibration
6. Detector position
7. Beam energy
8. Inelastic ep contribution
9. Assumed magnetic form factors during the GE extraction
10. …
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Systematic Uncertainties
(Example of Event Selection)
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• Changing elasticity cut at 
the radiative tail and 
obtain different sets of 
cross section results

• Sensitivity on cross 
section: typically within 
+/- 0.15%

• Mostly due to non-
uniformity of HyCal 
modules
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Checking Systematics – Azimuthal Symmetry
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1.1 GeV data
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Checking Systematics – Different methods of Forming ep/ee ratio
• Method 1: bin-by-bin method – taking ep/ee counts from the same angular bin
• Method 2: integrated Møller method – integrate Møller in a fixed angular range and use it as 

common normalization for all angle bins
• Luminosity cancelled in both methods
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Differential Cross Sections
• Differential cross section v.s. Q2, with 2.2 and 1.1 GeV data
• Statistical uncertainties: ~0.15% for 2.2 GeV, ~0.2% for 1.1 GeV per point
• Systematic uncertainties: 0.3% ~ 1.1% for 2.2 GeV, 0.3% ~0.5% for 1.1 GeV
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• Various fitters tested with a wide range of GE parameterizations, using PRad kinematic range and 
uncertainties (X. Yan et al. Phys. Rev. C98, 025204 (2018))

• Rational (1,1), 2nd order z transformation and 2nd order continuous fraction are identified as robust 
fitters with also reasonable uncertainties

• Typically a floating parameter 𝑛 is included to take care normalization uncertainties

Searching the Robust fitters

1

1 + 𝑝!𝑄"
1 + 𝑝"𝑄"

2nd order continuous fraction

2nd order z transformation
1 + 𝑝!𝑧 + 𝑝"𝑧",

𝑧 =
𝑇# + 𝑄" − 𝑇# − 𝑇$
𝑇# + 𝑄" + 𝑇# − 𝑇$
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• n1 and n2 obtained by fitting PRad electric form factors to 𝑓 𝑄! = $
𝑛"𝐺#

$ 𝑄! , for 1.1 GeV data
𝑛!𝐺#
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• 𝐺#
$ as normalized electric form factor: $𝑓(𝑄

!)/𝑛", for 1.1 GeV data
𝑓(𝑄!)/𝑛!, for 2.2 GeV data

• 𝐺#
$ 𝑄! = "% $!&"

"% $"&"
, the rational (1,1), a robust fitter based on X. Yan et al. Phys. Rev. C98, 025204 (2018)
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n1 = 1.0002 +/- 0.0002(stat.) +/- 0.0020 (syst.),                n2 = 0.9983 +/- 0.0002(stat.) +/- 0.0013 (syst.)

𝑟+ = 0.831 +/- 0.007 (stat.) +/- 0.012 (syst.) fm
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Systematic Uncertainties
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PRad result: 𝑟( = 0.831 +/- 0.007 (stat.) +/- 0.012 (syst.) fm
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1: W. Xiong et al. Nature  575, no. 7781, 147 (2019)

1



PRad-II Experiment
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New 
GEM

PRad
GEM

HyCal

Vacuum chamber

• JLab PAC 48 approved PRad-II (PR12-20-004) with the highest scientific rating “A”
• Goal: reach ultra-high precision (~4 times smaller total uncertainty), resolve tension 

with modern e-p scattering results
• The new proposal includes:

1. Adding tracking capacity (second GEM plane)
…



PRad-II Experiment – Cont.
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• The new proposal includes:
1. Adding tracking capacity (second GEM plane)
2. Upgraded HyCal with all high resolution PbWO4 modules
3. Convert to FADC based readout for HyCal
4. Four times smaller stat. uncertainty
5. Better RC calculating including NNLO diagrams

J. C. Bernauer EPJ Web of conferences 234, 01001 (2020)
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Expected total uncertainty: 0.0036 fm
Projected result with full detector upgrades



Summary
• The PRad collaboration carried out the first electron scattering experiment using a 

non-magnetic spectrometer approach – calorimeter and GEMs
1. Covers two orders of magnitude in low Q2 with the same detector setting
2. Unprecedented low Q2 data set (~2x10-4 GeV2) has been collected in e-p elastic scattering 

experiment
3. Novel use of a window-less cryogenically cooled hydrogen gas target
4. Simultaneous measurements of ep and ee scattering to reduce systematics

• The PRad result: 𝑟+ = 0.831 +/- 0.007 (stat.) +/- 0.012 (syst.) fm

• Planning on follow-up experiment, aim for ~4 times of improvement on total 𝑟+
uncertainty
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