A High Precision Measurement of the Proton Charge Radius at JLab

Weizhi Xiong
Syracuse University
for the PRad Collaboration

APS GHP Meeting 2021
April 16th 2021
Outline

• Introduction and the proton charge radius puzzle
• PRad experiment and apparatus
• Analysis and results
• Future improvements
• Summary
Proton Charge Radius Puzzle in 2018

<table>
<thead>
<tr>
<th>PRad and Apparatus</th>
<th>Analysis and results</th>
<th>Future Improvements</th>
</tr>
</thead>
</table>

- **Pohl 2010 (μH spect.)**
- **Antognini 2013 (μH spect.)**
- **Beyer 2017 (H spect.)**
- **Bernauer 2010 (ep scatt.)**
- **Zhan 2011 (ep scatt.)**
- **CODATA-2014 (ep scatt.)**
- **CODATA-2014 (H spect.)**
- **CODATA-2014**
- **Fleurbaey 2018 (H spect.)**

Proton charge radius r_p [fm]

5.6 σ
Elastic ep scattering, in the limit of Born approximation (one photon exchange):

\[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \left(\frac{E'}{E} \right) \frac{1}{1 + \tau} \left(G_{E}^{p} (Q^2) + \frac{\tau}{\alpha} G_{M}^{p} (Q^2) \right) \]

\[Q^2 = 4EE' \sin^2 \frac{\theta}{2} \quad \tau = \frac{Q^2}{4M_p^2} \quad \alpha = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1} \]

- Structure-less proton:

\[\left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2} \right]}{4k^2 \sin^4 \frac{\theta}{2}} \]

- \(G_E \) and \(G_M \) can be extracted using Rosenbluth separation

- For PRad, cross section dominated by \(G_E \)

\[G_E^p (Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + ... \]

Derivative at low \(Q^2 \) limit:

\[\langle r^2 \rangle = -6 \left. \frac{dG_E^p (Q^2)}{dQ^2} \right|_{Q^2=0} \]
PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering

- Covers two orders of magnitude in low Q^2 with the same detector setting
 - $\sim 2 \times 10^{-4} - 6 \times 10^{-2}$ GeV2

- Unprecedented low Q^2 ($\sim 2 \times 10^{-4}$ GeV2)
 - Fill in very low Q^2 region

- Normalize to the simultaneously measured Møller scattering process
 - best known control of systematics

- Windowless H$_2$ gas flow target removes major background source

- Extract the radius with precision from sub-percent cross section measurement
PRad Experiment Overview

• PRad goal: Measuring proton charge radius using ep elastic scattering

• Covers two orders of magnitude in low Q^2 with the same detector setting
 ➢ $\sim 2 \times 10^{-4} - 6 \times 10^{-2}$ GeV2

• Unprecedented low Q^2 ($\sim 2 \times 10^{-4}$ GeV2)
 ➢ Fill in very low Q^2 region

• Normalize to the simultaneously measured Møller scattering process
 ➢ best known control of systematics

• Windowless H$_2$ gas flow target removes major background source

• Extract the radius with precision from sub-percent cross section measurement

Bernauer data for lowest spectrometer setting

K. Griffioen et al.
PRC 93, 065207, 2016
PRad Experimental Apparatus

Introduction | PRad and Apparatus | Analysis and results | Future Improvements
Major Steps in Analysis

- Calibration
- Event Selection
- Background Subtraction
- Getting ep/ee Ratio
- Radiative Correction
- Elastic ep cross section
- Proton Electric Form Factor
- Fitting for the Radius
Event selection method

1. For all events, require hit matching between GEMs and HyCal

2. For ep and ee events, apply angle dependent energy cut based on kinematics
 1. Cut size depend on local detector resolution

3. For ee, requiring double-arm events, apply additional cuts
 1. Elasticity
 2. Co-planarity
 3. Vertex z
Analysis – Background Subtraction (2.2 GeV)

- *ep* background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- *ee* background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Graph:

- (b)
- (c)
- (d)
- (b) - (c)

- **2.2 GeV ep data**

Diagrams:

- **(a)**
- **(b)**
- **(c)**
- **(d)**
Analysis – Background Subtraction (2.2 GeV)

- ep background rate $\sim 10\%$ at forward angle ($<1.1 \text{ deg}$, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate $\sim 0.8\%$ at all angles

Residual hydrogen gas: hydrogen gas filled during background runs
Analysis – Inelastic ep Contribution

- Using Christy 2018 empirical fit to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO$_4$ region ($<3.5^\circ$), less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass region

Spectrum for $3.0^\circ < \theta < 3.3^\circ$ ($Q^2 \sim 0.014$ GeV2)

Spectrum for $6.0^\circ < \theta < 7.0^\circ$ ($Q^2 \sim 0.059$ GeV2)

M. E. Christy and P. E. Bosted, PRC 81, 055213 (2010)
Extraction of ep Elastic Scattering Cross Section

- To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$
\left(\frac{d\sigma}{d\Omega} \right)_{ep} = \left[\frac{N_{\text{exp}}(ep \rightarrow ep \text{ in } \theta_i \pm \Delta \theta_i)}{N_{\text{exp}}(ee \rightarrow ee)} \cdot \frac{\varepsilon_{ee}^{\text{geom}}}{\varepsilon_{ep}^{\text{geom}}} \cdot \frac{\varepsilon_{det}^{ee}}{\varepsilon_{det}^{ep}} \right] \left(\frac{d\sigma}{d\Omega} \right)_{ee}
$$

- Method 1: bin by bin method – taking ep/ee counts from the same angle bin
 - Cancellation of energy independent part of the efficiency and acceptance
 - Limited converge due to double arm Møller acceptance

- Method 2: integrated Møller method – integrate Møller in a fixed angle range and use it as common normalization for all angle bins

- Luminosity cancelled from both methods
Radiative Correction

• Radiative effects corrected by Monte-Carlo method:

1. Geant4 simulation package with full geometry setup

2. Event generators with complete calculations of radiative corrections\(^1,2\), include emission of radiative photons

3. Consistent results between generators

4. Include TPE effect\(^3\), less than 0.2% for \(ep \) in PRad kinematic range

5. Iterative procedure applied for radiative correction

\[
\sigma_{ep}^{\text{Born}(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}} \right)^{\text{exp}} / \left(\frac{\sigma_{ep}}{\sigma_{ee}} \right)^{\text{sim}} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}} \right)^{\text{Born}(model)} \cdot \sigma_{ee}^{\text{Born}(model)}
\]

References:
Systematic Uncertainties

• For PRad, systematic uncertainties may come from:
 1. Event selection (elasticity cuts, co-planarity cuts…)
 2. Radiative correction
 3. Detector efficiencies (GEM and HyCal)
 4. Beam-line background (Halo hitting collimator, residual gas…)
 5. HyCal energy calibration
 6. Detector position
 7. Beam energy
 8. Inelastic ep contribution
 9. Assumed magnetic form factors during the G_E extraction
 10. …
Systematic Uncertainties
(Example of Event Selection)

• Changing elasticity cut at the radiative tail and obtain different sets of cross section results

• Sensitivity on cross section: typically within +/- 0.15%

• Mostly due to non-uniformity of HyCal modules
Checking Systematics – Azimuthal Symmetry

1.1 GeV data

Reconstructed scattering angle [deg]

- Quadrant 1
- Quadrant 2
- Quadrant 3
- Quadrant 4

Data/Signal ratio (ep/ee)_{data/num}
Checking Systematics – Different methods of Forming ep/ee ratio

- Method 1: bin-by-bin method – taking ep/ee counts from the same angular bin
- Method 2: integrated Møller method – integrate Møller in a fixed angular range and use it as common normalization for all angle bins
- Luminosity cancelled in both methods

1.1 GeV data

![Graph showing ep/ee ratio for 1.1 GeV data]

2.2 GeV data

![Graph showing ep/ee ratio for 2.2 GeV data]
Differential Cross Sections

- Differential cross section v.s. Q^2, with 2.2 and 1.1 GeV data
- Statistical uncertainties: ~0.15% for 2.2 GeV, ~0.2% for 1.1 GeV per point
- Systematic uncertainties: 0.3% ~ 1.1% for 2.2 GeV, 0.3% ~0.5% for 1.1 GeV

![Graph showing differential cross sections](image)
Searching the Robust fitters

- Rational (1,1), 2$^{\text{nd}}$ order z transformation and 2$^{\text{nd}}$ order continuous fraction are identified as robust fitters with also reasonable uncertainties
- Typically a floating parameter n is included to take care normalization uncertainties

\[f(Q^2) = n \, G_E^P(Q^2) \]

Rational (1,1)

\[\frac{1 + p_1 Q^2}{1 + p_2 Q^2} \]

2$^{\text{nd}}$ order z transformation

\[1 + p_1 z + p_2 z^2, \quad z = \frac{\sqrt{T_c + Q^2} - \sqrt{T_c - T_0}}{\sqrt{T_c + Q^2} + \sqrt{T_c - T_0}} \]

2$^{\text{nd}}$ order continuous fraction

\[\frac{1}{1 + \frac{p_1 Q^2}{1 + p_2 Q^2}} \]
Proton Electric Form Factor G_E^p

- n_1 and n_2 obtained by fitting PRad electric form factors to $f(Q^2) = \begin{cases} n_1 G_E^p(Q^2), & \text{for } 1.1 \text{ GeV data} \\ n_2 G_E^p(Q^2), & \text{for } 2.2 \text{ GeV data} \end{cases}$

- G_E^p as normalized electric form factor: $\begin{cases} f(Q^2)/n_1, & \text{for } 1.1 \text{ GeV data} \\ f(Q^2)/n_2, & \text{for } 2.2 \text{ GeV data} \end{cases}$

- $G_E^p(Q^2) = \frac{1+p_1Q^2}{1+p_2Q^2}$, the rational $(1,1)$, a robust fitter based on X. Yan et al. Phys. Rev. C98, 025204 (2018)
Proton Electric Form Factor G_E^p

$r_p = 0.831 +/- 0.007 \text{ (stat.)} +/- 0.012 \text{ (syst.)} \text{ fm}$

$n_1 = 1.0002 +/- 0.0002 \text{(stat.)} +/- 0.0020 \text{ (syst.)}, \quad n_2 = 0.9983 +/- 0.0002 \text{(stat.)} +/- 0.0013 \text{ (syst.)}$
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Item</th>
<th>r_p uncertainty [fm]</th>
<th>n_1 uncertainty</th>
<th>n_2 uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event selection</td>
<td>0.0070</td>
<td>0.0002</td>
<td>0.0006</td>
</tr>
<tr>
<td>Radiative correction</td>
<td>0.0069</td>
<td>0.0010</td>
<td>0.0011</td>
</tr>
<tr>
<td>Detector efficiency</td>
<td>0.0042</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>Beam background</td>
<td>0.0039</td>
<td>0.0017</td>
<td>0.0003</td>
</tr>
<tr>
<td>HyCal response</td>
<td>0.0029</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Acceptance</td>
<td>0.0026</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Beam energy</td>
<td>0.0022</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>Inelastic ep</td>
<td>0.0009</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>G_M^p parameterization</td>
<td>0.0006</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.0115</td>
<td>0.0020</td>
<td>0.0013</td>
</tr>
</tbody>
</table>
PRad Proton Charge Radius

PRad result: \(r_p = 0.831 +/- 0.007 \text{ (stat.)} +/- 0.012 \text{ (syst.)} \text{ fm} \)

- Pohl 2010 (\(\mu \)H spect.)
- Antognini 2013 (\(\mu \)H spect.)
- Beyer 2017 (H spect.)
- CODATA-2018
- Bezginov 2019 (H spect.)
- PRad exp. (ep scatt.)
- Bernauer 2010 (ep scatt.)
- Zhan 2011 (ep scatt.)
- CODATA-2014 (ep scatt.)
- CODATA-2014 (H spect.)
- CODATA-2014
- Fleurbaey 2018 (H spect.)
- Mihovilovic 2019 (ep scatt.)
- Grinin 2020 (H spect.)

Introduction | PRad and Apparatus | Analysis and results | Future Improvements

PRad-II Experiment

- JLab PAC 48 approved PRad-II (PR12-20-004) with the highest scientific rating “A”
- Goal: reach ultra-high precision (~4 times smaller total uncertainty), resolve tension with modern $e-p$ scattering results
- The new proposal includes:
 1. Adding tracking capacity (second GEM plane)

![Diagram of PRad-II experiment setup with GEM and HyCal components]
• The new proposal includes:
 1. Adding tracking capacity (second GEM plane)
 2. Upgraded HyCal with all high resolution PbWO₄ modules
 3. Convert to FADC based readout for HyCal
 4. Four times smaller stat. uncertainty
 5. Better RC calculating including NNLO diagrams
Expected total uncertainty: 0.0036 fm
Projected result with full detector upgrades
Summary

• The PRad collaboration carried out the first electron scattering experiment using a non-magnetic spectrometer approach – calorimeter and GEMs
 1. Covers two orders of magnitude in low Q^2 with the same detector setting
 2. Unprecedented low Q^2 data set ($\sim 2 \times 10^{-4}$ GeV2) has been collected in $e-p$ elastic scattering experiment
 3. Novel use of a window-less cryogenically cooled hydrogen gas target
 4. Simultaneous measurements of $e+p$ and $e+e$ scattering to reduce systematics

• The PRad result: $r_p = 0.831 \pm 0.007$ (stat.) ± 0.012 (syst.) fm

• Planning on follow-up experiment, aim for ~ 4 times of improvement on total r_p uncertainty

This work was supported in part by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-03ER41231