Pre-preliminary 2019 Data Analysis

Cameron Bravo (SLAC)

Introduction

- New types of jobs in hps-mc
 - Generate physics processes with MadGraph and process up to right before running detector sim (slic/geant)
 - Simulate passage of particles through the detector separately for each component of the backgrounds (tritrig, wab, beam) while also merging and running readout and reconstruction
 - Run analysis with hpstr on this reconstructed MC as well as data
- Focusing on run 10031 which was with an 8 um W target and 100 nA beam current, for which the MC software was configured to simulate
- Exclusively looking at Kalman tracks and vertices
- Comparison of data and MC scaled to the expected rate
- What's next?

- Made a small set of MC samples locally to compare to the run hps_010031
 - 200 files of tritrig+beam each with 10,000 tritrig events
 - 2000 files of wab+beam each with 30,000 wab events
 - Done with conditions used for hps_010031 which has an integrated luminosity of 0.1525 pb⁻¹ based on Maurik's lumi script
- All relevant steps use detector HPS_TY_iter4
 - Slightly stale branch of hps-java used, but shouldn't matter that much
 - Special branch of Icsim from PF used

Preselection Cutflows

Tritrig+Beam hps_010031 WAB+Beam ×10⁶ $\times 10^3$ 16 180 20000 18000 14 160 16000 12 140 14000 10 120 12000 100 10000 8000 80 6000 60 2 4000 ₽e⁻ ₹ 3.8 GeV e Track X2 < 30 e* Track X2 < 30 P_e' > 1.0 [GeV] P_e* > 0.5 [GeV] ₽e' ~ 3.8 GeV e Track X2 < 30 e* Track X2 < 30 P_e' > 1.0 [GeV] P_e* > 0.5 [GeV] Pe⁻ ₹ 3.8 GeV P_e' ≥ 1.0 [GeV] P_e* > 0.5 [GeV] e Track X2 no-cuts Track 22 = 30 no-cuts Xe ~ 20 no-cuts Kunc = 20 ×30

- Data includes all triggers while MC readout exclusively uses Singles1 trigger (Ecal Cluster + Hodo Hit)
- FEE cut seems to remove less data than MC

Preselection Track Momentum

- MC is normalized to expected rate for 10031 luminosity
- Expected rate in MC is roughly 2x the data rate

Preselection Track Directions

Asymmetry in top vs bottom not the same in data and MC

Preselection Track Directions

- Shape of Phi_o of positron tracks is fairly close
- Shape of electron tracks is shifted away from zero a bit in MC

Preselection Track Extrapolations

- d_o is much higher on average in data for positrons and electrons
- Do we need to use a different beam spot in MC?

Preselection Track Extrapolations

- The shape of z₀ is clearly off for both tracks
- Electrons are maybe worse than positrons?

Preselection Psum

 Psum does not peak nearly as much in data

Preselection Vertex Mass

 Still need to spin up a rad+beam sample to be able to calculate the radiative fraction

Tight Selection Cutflows

hps_010031 Tritrig+Beam WAB+Beam 1400 ×10³ 4000 50000 1200 3500 45000 1000 3000 40000 35000 2500 800 30000 2000 600 25000 1500 20000 400 1000 15000 500 200 10000 P. + P. - 4.0 GeV Per + Per 24.0 Gev Per + Per >4.0 GeV LILI no-cuts no-cuts no-cuts X2 56 LILI $N_{v_{x}=1}$ X2 56 LILI X2 56 $N_{v_{x}=1}$

- Data includes all triggers while MC readout exclusively uses Singles1 trigger (Ecal Cluster + Hodo Hit)
- FEE cut seems to remove less data than MC

Tight Selection Track Momentum

Electron Momentum Positron Momentum 50000 60000 HPS Internal HPS Internal 2019 MC 2019 MC Tracks / 200 MeV Tracks / 200 MeV 50000 40000 tritrig+wah 40000 30000 30000 20000 20000 10000 10000 mhunhunhun 5 5 Ratio Ratio 4 3 3 '旨 0 <u></u> 5 ō 0.5 1.5 2 2.5 3 3.5 4.5 0.5 1.5 2 2.5 3 3.5 4.5 5 1 4 1 4 p_{e⁺} [GeV] p_e [GeV]

- Shapes match much better with Tight selection
- Rate is off by roughly a factor of 3 to 4

Tight Selection Track Directions

- Asymmetry in top vs bottom not the same in data and MC
- Shapes don't look so bad

Tight Selection Track Directions

- Shape of electron tracks is shifted away from zero a bit in MC
- Shape of positron tracks seems funny to me

Tight Selection Track Extrapolations

The shape of d_o is clearly off for both tracks still

Tight Selection Track Extrapolations

- The shape of z₀ is clearly off for both tracks
- The direction of the asymmetry seems backwards?

Tight Selection Psum

This doesn't look much different from preselection apart from the minimum requirement

•

Tight Selection Vertex Mass

Shape is definitely closer than it is with only the preselection, but still not quite right

•

Discussion

- Data/MC rate is about 1/3
- Some of the variable shapes sorta match, but most don't
- The funny asymmetries in tan(λ) and Z₀ are potentially a hint into what we might be missing?
 - Missing positron tracks in the top and electron tracks in the bottom?
 - Minus sign somewhere flipping top and bottom in data or MC but not both?
 - Just some crazy ideas
- I have more plots, and can pull them up if we want

- Lots to get merged into master of hps-java and hps-mc
- Will take a well coordinated effort
- Get setup to quickly repeat comparisons like this one for new detectors
 - This mostly is accomplished via the software organization
 - Also need to make a larger set of generator level files
- I am already starting to run even more beam files with different target thicknesses and beam currents

Backup

Preselection Cutflows

—SLAC

- Data includes all triggers while MC readout exclusively uses Singles1 trigger (Ecal Cluster + Hodo Hit)
- FEE cut seems to remove less data than MC

Tight Selection Cutflows

hps_010031 Tritrig+Beam WAB+Beam 1400 ×10³ 4000 50000 1200 3500 45000 1000 3000 40000 35000 2500 800 30000 2000 600 25000 1500 20000 400 1000 15000 500 200 10000 P. + P. - 4.0 GeV Per + Person Gev Per + Per >4.0 GeV no-cuts no-cuts no-cuts LILI X2 56 LILI $N_{v_{x}=1}$ X2 56 LILI X2 56 $N_{v_{x}=1}$

- Data includes all triggers while MC readout exclusively uses Singles1 trigger (Ecal Cluster + Hodo Hit)
- FEE cut seems to remove less data than MC

Preselection Track Momentum

- MC is normalized to expected rate for 10031 luminosity
- Expected rate in MC is roughly 2x the data rate

Tight Selection Track Momentum

Positron Momentum Electron Momentum 50000 60000 HPS Internal HPS Internal 2019 MC 2019 MC Tracks / 200 MeV Tracks / 200 MeV 50000 40000 tritrig+wah 40000 30000 30000 20000 20000 10000 10000 mhadaalaa 5 5 Ratio Ratio 4 4 3 3 '旨 0 <u></u> 5 0 0.5 1.5 2 2.5 3 3.5 4.5 0.5 1.5 2 2.5 3 3.5 4.5 5 1 4 1 4 p_{e⁺} [GeV] p_e [GeV]

- Shapes match better with Tight selection
- Rate is off by roughly a factor of 3

Preselection Track Directions

Asymmetry in top vs bottom not the same in data and MC

Tight Selection Track Directions

Asymmetry in top vs bottom not the same in data and MC

Preselection Track Directions

- Shape of Phi_o of positron tracks is fairly close
- Shape of electron tracks is shifted away from zero a bit in MC

Tight Selection Track Directions

- Shape of electron tracks is shifted away from zero a bit in MC
- Shape of positron tracks seems funny to me

Preselection Track Extrapolations

• d_o is much higher on average in data for positrons and electrons

Tight Selection Track Extrapolations

The shape of d_o is clearly off for both tracks still

Preselection Track Extrapolations

- The shape of z₀ is clearly off for both tracks
- Electrons are maybe worse than positrons?

Tight Selection Track Extrapolations

- The shape of z₀ is clearly off for both tracks
- The direction of the asymmetry seems backwards?

Preselection Psum

 Psum does not peak nearly as much in data

Tight Selection Psum

This doesn't look much different from preselection apart from the minimum requirement

•

Preselection Vertex Mass

 Still need to spin up a rad+beam sample to be able to calculate the radiative fraction

Tight Selection Vertex Mass

Shape is definitely closer than it is with only the preselection, but still not quite right

•