Full Lumi Reach Estimates

Cameron Bravo (SLAC)

- Developed and validated tools in hpstr using 2016 MC
- Used same pre-selection as 2016 vertex analysis
- Also included several of the "Tight" selection requirements
 - Unconstrained vertex fit $\chi^2 < 4.0$
 - Energy sum > 1.84 GeV
 - Both tracks have layer 1 hit (L1L1)
 - Only one vertex in event passing selection requirements
- This selection is not "final", just a reasonable working point to develop tools

Radiative Fraction

- Truth matching used for rad
- Appears to be close to result from Matt S
- Parameterized by 3rd order polynomial, chosen via f-test

Mass Resolution

Low stats from low mass samples

m_{vtx} [MeV]

- Appears to be close to result from Matt S, slightly higher
- Resolution from fit scaled by 1.43 (this number came from Matt S)
- Parameterized by 3rd order polynomial, chosen via f-test

Expected Signal Rate for 100% of 2016 Lumi

-SLAC

- Used z-cut values from Matt S to validate expected signal rate calculation
- Expected signal rate appears to agree well with Matt S code

Rad cutflow for 2019 MC

- 1071864 events passed the singles3 trigger
- 61965 events after the full selection
- 3.6 GeV is a loose Psum cut
- https://confluence.slac.stanford.edu/display/h psg/pass0b+for+2019+MC

Radiative Fraction for 2019 Reach

- "pass0b" using the singles3 trigger produced by TongTong
- This is weighted to the differential rate for 110/pb, which is the lumi from optimizing area for 16 total more weeks
- WAB stats are low as usual

Mass Resolution for 2019 Reach

- Low stats from low mass samples
- Resolution from fit scaled up by 43%
- Parameterized by 3rd order polynomial, chosen via f-test

Vertex Z Distribution Fits for 2019 Reach

Fits using different widow sizes in mass centered around 150 MeV

Zcut Luminosity Scaling Study

- Studied using the method used in 2015 and 2016 analysis notes applied to the 2019 MC
 - Scale the fit and recompute the 0.5 tail event interval
 - Fit result with A*log(Lumi)+B to estimate lumi scaling contribution to the zcut value

Vertex Z Resolution for 2019 Reach

• Using MC vtx Z resolution from 2019Tridents

- Thanks to PF for this plot
- Fit the blue points with a polynomial, won't bore you with those details

Comparison of Zcuts for 2019 Reach

- Zcuts taken from different procedures based on normal fits and via calibration of $N^*\sigma_z$ via "scaling" 2016 zcuts
- Zcut values from vtx distribution fits not great with small effective MC lumi

Expected Signal Rate for 2019 Reach

- Used z-cut values scaled from values used in 2016 analysis
- Look like we have a good shot at making an exclusion with the 2019 data!

Rad cutflow for 3.7 GeV MC

- 1143478 events passed the singles3 trigger
- 34741 events after the full selection
- 3.1 GeV is a loose momentum sum cut in my opinion
- https://confluence.slac.stanford.edu/display /hpsg/pass0b+for+future+3.7+GeV

Radiative Fraction for 3.7 GeV

- "pass0b" using the singles3 trigger produced by TongTong
- This is weighted to the differential rate for 530/pb, which is the approximate lumi for 10 weeks
- WAB stats are low as usual

SLAO

- Using MC vtx Z resolution from the 3.7 GeV tritrig sample
 - Thanks to PF for the assist on this
 - Fit the points with a polynomial, won't bore you with those details
 - At 150 MeV we have 0.7 mm, so $8.0^{*}\sigma_{r}$ is a reasonable calibration, then add 1.5 for lumi scaling

Expected Signal Rate for 3.7 GeV Reach

- Zcuts used are conservative
 - Zcut = $0.5 \times \log(\text{lumi}) + 7.4 \times \sigma_z$

Rad cutflow for 2.3 GeV MC

- 1378380 events passed the singles3 trigger
- 40844 events after full selection
- 1.9 GeV is a loose momentum sum cut in my opinion
- https://confluence.slac.stanford.edu/display /hpsg/pass0b+for+future+2.3+GeV

Radiative Fraction for 2.3 GeV

- "pass0b" using the singles3 trigger produced by TongTong
- This is weighted to the differential rate for 106/pb, which is the approximate lumi for 6 weeks
- WAB stats are low as usual

Expected Signal Rate for 2.3 GeV Reach

- Zcut = $0.5 \times \log(\text{lumi}) + 7.0 \times \sigma_{z}$

Overview of Study for Full HPS Lumi

- Zcuts have a contribution from exponential tail which changes as a function of lumi
 - Fit using 2016 procedure, scale fit to different lumis, compute the 0.5 tail event interval
 - Used 0.5*Log(Lumi) for this contribution
 - It does vary by about 20% depending on the mass
 - Already have an uncertainty since we are "scaling" from 2016
- Add expected signal from 2019 run to that of 2.3 and 3.7 GeV future runs, calculate excluded area
 - Want to find best way to distribute remaining 16 weeks

Optimizing Lumi Distribution between 2.3 and 3.7 GeV

- We can see the optimum for a total of 16 remaining weeks is to use 6 weeks at 2.3 GeV and 10 weeks at 3.7 GeV
- Repeat this for different N total weeks

Reach Estimate for Full HPS Lumi

• We seem to be able to exclude physics at roughly the same rate wrt to beam-time from 10 to 20 weeks!

- The results of this study were used in JLab PAC presentation for jeopardy
 - We were successful in defending ourselves
 - Can improve upon this after doing 2019 analysis because then we will have a better basis for "scaling" Zcuts for the analysis
- Need to find time to write an internal note to record all the details in a clear format, right now it is all just on my desktop at SLAC and a few sets of slides
 - Anyone have some spare time lying around?